
ParDiff: Practical Static Differential Analysis of Network
Protocol Parsers
MINGWEI ZHENG, Purdue University, USA
QINGKAI SHI, Purdue University, USA
XUWEI LIU, Purdue University, USA
XIANGZHE XU, Purdue University, USA
LE YU, Purdue University, USA
CONGYU LIU, Purdue University, USA
GUANNAN WEI, Purdue University, USA
XIANGYU ZHANG, Purdue University, USA

Countless devices all over the world are connected by networks and communicated via network protocols.
Just like common software, protocol implementations suffer from bugs, many of which only cause silent data
corruption instead of crashes. Hence, existing automated bug-finding techniques focused on memory safety,
such as fuzzing, can hardly detect them. In this work, we propose a static differential analysis called ParDiff
to find protocol implementation bugs, especially silent ones hidden in message parsers. Our key observation is
that a network protocol often has multiple implementations and any semantic discrepancy between them may
indicate bugs. However, different implementations are often written in disparate styles, e.g., using different
data structures or written with different control structures, making it challenging to directly compare two
implementations of even the same protocol. To exploit this observation and effectively compare multiple
protocol implementations, ParDiff (1) automatically extracts finite state machines from programs to represent
protocol format specifications, and (2) then leverages bisimulation and SMT solvers to find fine-grained and
semantic inconsistencies between them. We have extensively evaluated ParDiff using 14 network protocols.
The results show that ParDiff outperforms both differential symbolic execution and differential fuzzing tools.
To date, we have detected 41 bugs with 25 confirmed by developers.

CCS Concepts: • Software and its engineering→ Software defect analysis; Automated static analysis;
• Security and privacy→Web protocol security.

Additional Key Words and Phrases: Network protocol, protocol format specification, static program analysis,
differential analysis.

ACM Reference Format:
Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang.
2024. ParDiff: Practical Static Differential Analysis of Network Protocol Parsers. Proc. ACM Program. Lang. 8,
OOPSLA1, Article 137 (April 2024), 27 pages. https://doi.org/10.1145/3649854

Authors’ addresses: Mingwei Zheng, Purdue University, West Lafayette, USA, zheng618@purdue.edu; Qingkai Shi,
Purdue University, West Lafayette, USA, shi553@purdue.edu; Xuwei Liu, Purdue University, West Lafayette, USA,
liu2598@purdue.edu; Xiangzhe Xu, Purdue University, West Lafayette, USA, xu1415@purdue.edu; Le Yu, Purdue University,
West Lafayette, USA, yu759@purdue.edu; Congyu Liu, Purdue University, West Lafayette, USA, liu3101@purdue.edu;
Guannan Wei, Purdue University, West Lafayette, USA, guannanwei@purdue.edu; Xiangyu Zhang, Purdue University, West
Lafayette, USA, xyzhang@cs.purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/4-ART137
https://doi.org/10.1145/3649854

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

HTTPS://ORCID.ORG/0009-0003-6032-6045
HTTPS://ORCID.ORG/0000-0002-8297-8998
HTTPS://ORCID.ORG/0009-0000-5319-1160
HTTPS://ORCID.ORG/0000-0001-6619-781X
HTTPS://ORCID.ORG/0009-0008-7613-946X
HTTPS://ORCID.ORG/0000-0001-5774-0809
HTTPS://ORCID.ORG/0000-0002-3150-2033
HTTPS://ORCID.ORG/0000-0002-9544-2500
https://doi.org/10.1145/3649854
https://orcid.org/0009-0003-6032-6045
https://orcid.org/0000-0002-8297-8998
https://orcid.org/0009-0000-5319-1160
https://orcid.org/0000-0001-6619-781X
https://orcid.org/0009-0008-7613-946X
https://orcid.org/0000-0001-5774-0809
https://orcid.org/0000-0002-3150-2033
https://orcid.org/0000-0002-9544-2500
https://doi.org/10.1145/3649854

137:2 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

1 INTRODUCTION
Network protocols are crucial for systems that require communication, such as robotic systems and
the Internet of Things, to name a few. Network protocols specify the formats of communication
messages and the steps that multiple parties must follow in order to communicate. Different
implementations have been independently developed for the same network protocol, because of
either historical reasons or specific design requirements such as reducing the energy consumption
for an embedded system. For example, there are hundreds of different implementations for more
than 15 protocols in the Bluetooth family.1,2

Message parser is a critical component of a protocol implementation, responsible for parsing
network messages and checking their validity. Unfortunately, network message parsers are error-
prone. Numerous bugs have been discovered, which often result in severe system failures, security
breaches, and data loss. For example, Heartbleed [Heartbleed 2020], a buffer over-read bug discov-
ered in the Transport Layer Security (TLS) protocol parser of OpenSSL in 2014, affects millions
of web servers around the world.3 This vulnerability has allowed attackers to extract sensitive
information from servers due to a missing check of the message buffer bounds.

Among numerous bugs in message parsers, a number of them are silent data corruptions such that
they violate protocol-specific properties but do not cause crashes. For example, the vulnerability,
CVE-2022-26129,4 which is detected by our approach and detailed in the next section, reads data
beyond a protocol-specified range in an oversized buffer but does not access data beyond the buffer
bounds. As such, it is not a common buffer over-read bug that can cause system crashes. Traditional
static or dynamic bug-finding techniques, e.g., symbolic execution [Cadar et al. 2008; Shi et al. 2018;
Wei et al. 2023; Xie and Aiken 2005], model checking [Ball et al. 2011; Cho et al. 2013; Musuvathi
and Engler 2004], or fuzzing [Godefroid et al. 2012; Haller et al. 2013; Huang et al. 2020], cannot
detect it unless they are provided with the protocol-specific oracles. Unfortunately, such specific
oracles are often not available or entail substantial and error-prone manual efforts, because network
protocols are usually specified in natural language documents and lack formal specifications.

To address the oracle problem, differential analysis [Arnaboldi 2023; Badihi et al. 2020; Johnson
et al. 2011; Ma et al. 2018; Mora et al. 2018; Person et al. 2008; Verdoolaege et al. 2012] and testing
[Bao et al. 2016; Zou et al. 2021] could be useful as they can effectively find domain-specific bugs by
comparing different versions or implementations of a system. However, existing approaches have
notable limitations. First, in terms of static analysis, approaches like graph differentiation [Johnson
et al. 2011] and differential symbolic analysis [Person et al. 2008; Rutledge and Orso 2022; Ver-
doolaege et al. 2012] are limited to analyzing syntactically similar programs, e.g., programs evolved
from the same base version. If programs are substantially different in their syntactic structures,
these approaches may produce considerable false positives. Second, in terms of dynamic analysis,
while existing differential testing (or fuzzing) [Arnaboldi 2023; Churchill et al. 2019] is capable of
finding semantic differences in independent projects, their effectiveness strongly depends on the
quality of their inputs and often suffers from low code coverage, leading to many false negatives.
Additionally, using differential testing needs significant manual effort in bug diagnosing, since they
are not designed to provide hints on bug locations. Therefore, developers must closely examine
execution discrepancies and identify problematic code locations for each input.
Our Approach. This paper presents ParDiff, a novel static differential analysis that can discover
silent and protocol-specific bugs in a top-down parser for network messages. ParDiff addresses

1https://wikipedia.org/wiki/List of Bluetooth protocols
2https://wikipedia.org/wiki/Bluetooth stack#Embedded implementations
3https://en.wikipedia.org/wiki/Heartbleed
4https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26129

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

https://wikipedia.org/wiki/List_of_Bluetooth_protocols
https://wikipedia.org/wiki/Bluetooth_stack##Embedded_implementations
https://en.wikipedia.org/wiki/Heartbleed
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26129

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:3

the limitations of prior work by abstracting protocol implementations to a high-level and unified
representation. The unified representation leads to the precise comparison of fine-grained program
behaviors, further enabling low-effort bug localization.

To identify semantic differences in two syntactically disparate implementations, ParDiff auto-
matically transforms a protocol implementation into a finite-state machine (FSM) that characterizes
the message formats. In this abstracted FSM, state transitions are conditioned by first-order logic
formulas, which represent format constraints, and ordered by the indices of a message buffer. This
high-level abstraction makes ParDiff effective, disregarding the syntactic disparity of multiple
protocol implementations. Furthermore, the transformation discards all implementation details
irrelevant to parsing and, thus, makes it possible for our tool to handle large programs.

To find bugs, ParDiff combines a bisimulation algorithm and SMT solvers to compare the
FSMs extracted from different implementations. The bisimulation algorithm attempts to align state
transitions in two FSMs so that we can compare the parsing status in a fine-grained way. That
is, our differential analysis checks if the constraints on each pair of aligned state transitions are
equivalent. Given that these implementations should follow the same protocol specification, the
FSMs should precisely align with each other. Hence, any discrepancy in state transitions between
these FSMs indicates a potential bug. This approach effectively breaks down the comparison of
large, intricate formulas into multiple comparisons of smaller, manageable ones, enhancing the
accuracy and precision of the analysis.

Finally, to reduce the manual effort in bug localization, ParDiff records source code locations
during the process of format constraint abstraction. Consequently, every disparity detected in the
FSMs can be directly traced back to its source code position, facilitating the precise identification
of underlying issues. Notably, compared to common differential testing techniques, this process
eliminates the need to scrutinize execution discrepancies across numerous inputs, significantly
reducing the human effort to diagnose and localize bugs.
Contributions. In summary, we make the following contributions.
• We propose a novel static differential analysis for locating hidden bugs in protocol parsers.
– It features a path constraint reduction algorithm to isolate the message parsing logic from

other functionalities and to generate protocol format constraints.
– It translates format constraints to a compact representation, i.e., constrained finite-state

machines, for precise alignment between different implementations.
– It leverages a bisimulation algorithm that precisely projects the differences in the constrained

finite-state machines to buggy code at a fine-grained level.
• We implement the proposed approach in ParDiff,5 a practical static differential analyzer for

protocol parsers. We have evaluated ParDiff on 14 real-world protocols. The result shows that
ParDiff is efficient and capable of analyzing two disparate implementations of a protocol in
one minute on average. We have detected a total of 41 bugs, with 25 confirmed or fixed by the
developers. Conventional differential symbolic execution cannot finish the analysis due to the
path explosion problem. Differential testing can only detect 3 of them in the same time budget
(i.e., less than 2 minutes) and can only detect 25 in 24 hours (i.e., using over 720× time cost).

Organization. Section 2 presents a real-world bug to motivate our solution. Section 3 provides an
overview of our approach. Section 4 presents the detailed design of ParDiff. Section 5 presents
the evaluation, where ParDiff is compared to both static and dynamic analysis tools. Section 6
discusses the related work. Section 7 concludes the paper.

5ParDiff is publicly available at https://github.com/zmw12306/ParDiff.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

https://github.com/zmw12306/ParDiff

137:4 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

type: 2 len: 2 …

void parse_update_subtlv (char *a, int alen, char *channels){

int type, len, i = 0;
while (i < alen) {

type = a[i];
if (type == 0) {

i++;
continue;

}
if (i + 1 ≥ alen)

return;
len = a[i + 1];

if (i + len > alen) {
flog_err(EC_BABEL_PACKET, "Received truncated attributes.");
return;

}

if (type == 2) {
if (len > 8)

len = 8;
memcpy(channels, a + i + 2, len);

}
...
i += len + 2;

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

static int parse_update_subtlv(struct interface *ifp,
int metric, int ae, char *a, int alen,
char *channels, int *len_ret,
char *src_prefix, char *src_len) {

int type, len, i = 0;
while (i < alen) {

type = a[i];
if (type == 0) {

i++;
continue;

}
if (i + 2 > alen)

goto fail;
len = a[i + 1];

if (i + len + 2 > alen) {
goto fail;

if (type == 2) {
memcpy(channels, a + i + 2, MIN(len, *len_ret));
channels_len = MIN(len, *len_ret);

}
...
i += len + 2;

}

*len_ret = channels_len;
return 1;

fail:
fprintf(stderr, "Received truncated sub-TLV.");
return –1;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

assume alen = 2, a[0] = 2, a[1] = 2
This means a[2]a[3] are not in the message a!

i = 0, alen = 2

i = 0

i = 0, len = 2, alen = 2

i = 0, len = 2

BABEL packet
structure

the only TLV in
the message a

prefix

⓹

⓵

⓶
⓷
⓸

… ……

the 1st TLV in b the remaining
TLVs in b

à i + 1 < alen

à len = a[1] = 2

à i + len ≤ alen

message a, alen = 2

à since the value-length is 2,
à we copy a[2]a[3] into channels

message b suffix

line 23 copies two bytes (the blue ones) from message b
when parsing message a

(a) Implementation I: frrouting/frr (b) Implementation II: jech/babeld

Fig. 1. Motivating example. (a) A buggy implementation. The circled numbers and the message structure
provide an example to show how the buggy code allows us to read bytes out of the scope of the message 𝑎
when parsing the message. (b) A correct implementation.

2 MOTIVATING EXAMPLE
Before diving into the technical details, let us first use a real-world bug found by ParDiff to
illustrate what bugs our new approach can discover and the limitations of existing work.

2.1 Buffer Accesses Offending Protocol-Specified Bound
We consider a bug found in an implementation of the BABEL network routing protocol (RFC 8966)
[Chroboczek and Schinazi 2023]. The program mistakenly accesses a buffer at an index, which
is out of the bound specified by the protocol, but still within the memory-safe bound due to an
over-sized allocation. Therefore traditional crash-focused approaches face difficulty in detecting it.

Figure 1 shows two BABEL implementations that exhibit this bug. The first implementation
(Figure 1(a)) is excerpted from the FRRouting Protocol Suite [Developers 2023], and the second (Fig-
ure 1(b)) is from the other reference implementation [Chroboczek 2023]. The two implementations
define different APIs, and exhibit substantial syntactic and semantic differences, as highlighted in
green for syntactic differences and red for semantic differences.

Line 15 of Figure 1a manifests the bug, which checks a less constrained condition diverging
from the condition at line 17 in Figure 1b. As shown at the bottom of Figure 1a, a BABEL packet
consists of a prefix, multiple messages, and a suffix. The function parse update subtlv in Figure 1
parses a message a, whose length is alen, into a list of type-length-value (TLV) items iteratively.
Each loop iteration parses one TLV item. A TLV consists of a field type (line 5), a length field len
(line 12), and the value field, e.g., channels (line 23), whose length is specified by the length field.
The incorrect check (line 15) allows the parser to read bytes beyond the delimited length of the
current message (line 23), i.e., extruding into the next message or the suffix of the current message.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:5

This does not cause a buffer over-read error in the usual sense, because it does not exceed the
allocated bound of the whole buffer. However, it is semantically not allowed to use the content of
the second message to interpret the first as all messages should be independent.

To see a concrete failing case, let us consider a message where a[0]=2, a[1]=2, and alen=2, as
shown at the bottom in Figure 1a. Since the length of the message is 2 and a TLV item in the message
contains at least two bytes, i.e., the type and the length bytes, we can conclude that the message
a contains only one TLV item whose length is 2. This further implies that the TLV item contains
an empty value. However, the len field (i.e., a[1]) mistakenly specifies that there is a two-byte
value. The incorrect check at line 15 fails to recognize this inconsistency, causing two bytes from
the following message to be undesirably copied at line 23. In contrast, the second implementation
in (b) correctly checks i + len + 2 ¡= alen at line 17, thus, can filter this invalid message.

2.2 Why Existing Works Fail
Traditional methods, including symbolic execution (e.g., [Cadar et al. 2008; Shi et al. 2018; Wei
et al. 2023; Xie and Aiken 2005]), model checking (e.g., [Ball et al. 2011; Cho et al. 2013; Musuvathi
and Engler 2004]), and fuzzing (e.g., [Godefroid et al. 2012; Haller et al. 2013; Huang et al. 2020]),
cannot effectively detect this bug. Although the buggy program accesses bytes beyond the range of
a message, it does not access bytes beyond the whole buffer. That is, it does not violate common
memory-safety properties but a domain-specific correctness oracle, which is either unavailable or
very expensive to obtain in practice.

To address the domain-specific oracle problem, dynamic and static differential analyses have
been proposed in the literature. Differential testing or fuzzing [Arnaboldi 2023; Reen and Rossow
2020; Zou et al. 2021] feeds the same input into different implementations and compares their
execution behaviors. For example, DPIFuzz [Reen and Rossow 2020] encodes the runtime program
behavior into a hash and then compares the hashes generated by different implementations but
with the same inputs. However, such techniques can hardly find this bug due to the following
limitations. First, fuzzing techniques require high-quality seed inputs so that they can achieve
high code coverage and generate (partially) valid protocol messages that can pass all preceding
validation checks before reaching the buggy code. That is, in the aforementioned example (Figure 1),
the message should be able to pass the checks at lines 6, 10, 15, and 20 in the first implementation.
Since fuzzing techniques are mostly coverage-driven relying on random mutations, such a simple
search strategy is unlikely to generate inputs satisfying the aforementioned conditions. In addition,
they may generate a large amount of difference-inducing inputs. To comprehend the diverging
execution behaviors, humans need to execute each input from the entry function of message parsers.
This additional effort significantly increases the difficulty of identifying bugs from the differences.

Unlike fuzzing, as a static technique, differential symbolic analysis [Badihi et al. 2020; Mora et al.
2018; Person et al. 2008; Ramos and Engler 2011; Rutledge and Orso 2022; Verdoolaege et al. 2012]
does not rely on seed inputs, and they can achieve high coverage of program paths and infer precise
constraints over a packet. Due to the well-known path explosion issue in symbolic execution, these
techniques often assume that two implementations have few differences and, thus, are primarily
used to analyze multiple versions of the same software [Person et al. 2008]. In the example Figure 1
and more general situations, two protocol implementations can come from completely different
codebases, containing a large number of differences in the code. Such settings break the assumption
of differential symbolic analysis and make it impractical.

3 OUR APPROACH IN A NUTSHELL
In this section, we present an overview of ParDiff and illustrate its capability of detecting the bug
in the motivating example. We also discuss how inherent challenges in our approach are addressed.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:6 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

3.1 Overview
ParDiff automatically extracts message-parsing logic from different protocol implementations
to finite state machines (FSMs) constrained by message-parsing properties. By lifting programs
to FSMs, unessential implementation differences are abstracted away. Then, ParDiff constructs
a bisimulation relation [Gentilini et al. 2003] between two FSMs corresponding to two different
implementations. The discrepancy between the two FSMs can be reified to a concrete input, indicat-
ing a potential bug. Checking discrepancy or equivalence at the FSM level allows us to efficiently
compare two implementations in quasi-linear steps and locate buggy code at a fine-grained level.
Compared to existing work that attempts to find subtle bugs in protocol parsers, ParDiff has the
following advantages:
• Unlike conventional static differential analysis that suffers from scalability, ParDiff abstracts

away format-irrelevant code and, thus, is capable of handling large programs.
• Unlike conventional dynamic differential analysis that suffers from low code coverage or re-

quires manual effort to recover protocol formats, ParDiff automatically infers precise protocol
formats and can reach deep code guarded by complex conditions.
• ParDiff generates inputs that are precisely mapped to buggy source code locations, significantly

reducing the human effort to diagnose and localize bugs.

3.2 How ParDiff Works
Despite these advantages, it is technically challenging to realize ParDiff in practice due to path
explosion and fine-grained comparison of path conditions. Next, we briefly discuss the steps of
ParDiff, together with our solution to addressing the inherent challenges.
Stage 1: Extracting Protocol Format Constraints (detailed in Section 4.1). A message parser
imposes constraints on input messages. These constraints in an execution path encode a message
format. Ideally, ParDiff should exhaustively enumerate all paths to generate complete protocol
formats. However, this is challenging in practice, because there are an exponential number of paths
for any nontrivial program, which is known as the path explosion problem. Moreover, protocol
parsers may contain auxiliary code, i.e., routines that are not related to parsing or respectively only
exist in one parser but not the others. Taking these auxiliary routines into account leads to false
positives in comparison.

To mitigate path explosion and reduce false positives, ParDiff must only select a finite number
of paths that are critical for identifying discrepancies or establishing the equivalence between two
parsers. To this end, we first adopt loop unrolling and state merging, as commonly used in symbolic
execution and bounded model checking. However, this is not enough since the extracted format
constraints may still contain constraints irrelevant to the parsing logic. Thus, ParDiff also filters
out constraints that are not imposed on the input buffer.

In the example of Figure 1, we unroll the loop once and only extract constraints imposed on the
input buffer a. In Figure 1(a), one execution path 𝑋1 goes through line numbers 4 → 6 → 8 →
4 → 28, and is constrained by 𝜙𝑋1 , i.e., 0 < alen ∧ 𝑎[0] = 0 ∧ 1 ≥ alen. The constraint forms a
valid format for the set of messages that only contain a single byte of zero. Similarly, the constraint
of the path 𝑋2 : 4 → 6 → 10 → 15 → 20 → 23 → 4 → 28 is 𝜙𝑋2 ≡ 0 < alen ∧ 𝑎[0] ≠ 0 ∧ 1 <

alen ∧ 𝑎[1] ≤ alen ∧ 𝑎[0] = 2 ∧ 𝑎[1] + 2 ≥ alen, indicating a valid format where 𝑎[0] = 2. We can
also extract similar constraints 𝜙𝑌1 and 𝜙𝑌2 from the second implementation (Figure 1(b)).
Stage 2: Comparing Protocol Format Constraints (detailed in Section 4.2). Assume 𝜙1 and 𝜙2
are two format constraints obtained from their corresponding implementations. To find differences
between two protocol implementations, it seems straightforward to use an SMT solver to check
if 𝜙1 ≠ 𝜙2 is satisfiable. A satisfiable assignment indicates an input message that can be parsed

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:7

0 < alen ∧ 𝑎 0 = 2 ∧ 1 < alen ∧ 𝑎 1 ≤ alen ∧ 𝑎 1 + 2 ≥ alen

𝜙!! = 0 < alen ∧ 𝑎 0 = 0 ∧ 1 ≥ alen

	𝕊"

0 < alen ∧ 𝑎 0 = 0 ∧ 1 ≥ alen

0 < alen ∧ 𝑎 0 = 2 ∧ 1 < alen 𝑎 1 ≤ alen ∧ 𝑎 1 + 2 ≥ alen
	𝕊#

	𝕊$

	𝕊%

𝜙!" = 0 < alen ∧ 𝑎 0 ≠ 0 ∧ 1 < alen ∧ 𝑎 1 ≤ alen ∧ 𝑎 0 = 2 ∧ 𝑎 1 + 2 ≥ alen

	𝕊"&

0 < alen ∧ 𝑎 0 = 0 ∧ 2 > alen

0 < alen ∧ 𝑎 0 = 2 ∧ 2 ≤ alen 𝑎 1 + 2 ≤ alen ∧ 𝑎 1 + 2 ≥ alen
	𝕊#&

	𝕊$&

	𝕊%&

𝜙'! = 0 < alen ∧ 𝑎 0 = 0 ∧ 2 > alen

𝜙'" = 0 < alen ∧ 𝑎 0 ≠ 0 ∧ 2 ≤ alen ∧ 𝑎 1 + 2 ≤ alen ∧ 𝑎 0 = 2 ∧ 𝑎 1 + 2 ≥ alen

(a)

(b)

rewrite to

Fig. 2. Constraints and FSMs for the two implementations.

in one implementation but not the other, thereby finding a semantic difference. However, this
monolithic satisfiable assignment does not directly inform us which specific lines of the program
contribute to the semantic discrepancy. Additionally, to expose all possible discrepancies, we must
keep querying the SMT solver for various assignments. Hence, this coarse-grained use of the SMT
solver is ineffective in locating the discrepancy between the two implementations (see Section 5.4).

To precisely locate the buggy statements in the protocol parser, ParDiff must identify the
specific constraints that lead to semantic differences. This entails finding a matching between two
format constraints so that ParDiff can safely ignore those constraints that do not lead to semantic
differences. To this end, ParDiff transforms each format constraint to an FSM, which encodes
the spatial parsing logic of the protocol format. Edges are conditioned by constraints imposed on
the input messages. Transitions between states are ordered by constrained buffer indices. That is,
if one state transition is constrained by the 𝑖-th element of a network message, its immediately
subsequent state transitions should be constrained by the 𝑖 + 1-th element. This ensures that we
can align two FSMs by the order of how they constrain the input memory buffer.

Figure 2 illustrates partial FSMs, which are produced based on the format constraints collected
from the two implementations in Figure 1. Each state transition describes how one or multiple
consecutive bytes are parsed and each path from the start state to the final state describes how a
valid message is parsed.
Stage 3: Locating Implementation Differences and Bugs (detailed in Section 4.3). Given two
FSMs produced in the previous stage, we leverage bisimulation [Gentilini et al. 2003] to compare
two FSMs, which can efficiently find nonequivalent state transitions. For example, in Figure 2, we
can establish a bisimulation between S0 → S1 and S′0 → S′1, since their transition conditions are
equivalent; however, the transitions S1 → S3 and S′1 → S′3 do not bisimulate each other.

Note that the two FSMs in Figure 2 are already isomorphic modulo transition conditions. However,
in practice, two FSMs can differ a lot in both structures and transition conditions, and they can still

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:8 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

𝑎, 𝑎𝑙𝑒𝑛, 𝑥 ∈ Variables
Parser 𝑃 := parse(a, alen, 𝑥1, 𝑥2, . . .) { 𝑆 }
Value 𝑣 := 𝑥 | 𝑐

Expression 𝑒 := 𝑣 | 𝑣1 ⊕ 𝑣2 | 𝑎[𝑣]
Stmt 𝑆 := 𝑥 ← 𝑒 assignment

| abort() abort
| if (𝑣) { 𝑆1} else { 𝑆2 } branching
| 𝑆1;𝑆2 sequencing

⊕ ∈ { ∧,∨, +, −, ×,÷,>, ≥,<, ≤,=,≠ }

Fig. 3. The syntax of the language protocol parsers.

be compared by bisimulation. Since each state transition in the FSMs contains only constraints over
a few message bytes, when bisimulation fails, we can easily locate the implementation differences
according to the differences in state-transition constraints. For example, the aforementioned state
transitions differ in the constraints 𝑎[1] ≤ 𝑎𝑙𝑒𝑛 and 𝑎[1] + 2 ≤ 𝑎𝑙𝑒𝑛, which correspond to the buggy
code at line 15 and line 17 in the first and the second implementations, respectively.

4 DESIGN
This section discusses the details of the three stages in our approach: (1) collecting protocol format
constraints (Section 4.1), (2) translating format constraints into a finite state machine (Section 4.2),
and (3) comparing state machines to locate possible bugs in different implementations (Section 4.3).
At the end of this section, we discuss the soundness of our design (Section 4.4).

4.1 Collecting Format Constraints
To locate the implementation differences, ParDiff first collects format-relevant path constraints
from multiple protocol implementations. To avoid path explosion, ParDiff unrolls loops (and
recursive function calls) up to a constant number, and merges path constraints at the joint point
of multiple paths, instead of enumerating each path in a program. To remove format-irrelevant
constraints, ParDiff ignores the constraints not imposed on the input buffer.

4.1.1 Language of Protocol Parsers. To illustrate how ParDiff works, we use a small language that
models a protocol parser. The syntax of the small language is defined in Figure 3. In the language,
the entry of a protocol parser is a function parse that takes at least two parameters as the inputs.
Following the motivating example (see Figure 1), the parameter a is an array of bytes representing
the network message to parse. The parameter alen represents the length of the array. It may
also take additional arguments to configure the parser. Values in the language could be either a
variable or a constant. An expression could be a value, a binary expression, or an array access of the
input message. A program statement in the parser could be an assignment to a variable, an abort
statement (modeling errors e.g., flog err in Figure 1), a conditional statement, or a sequential
composition of two statements. In our language, abort terminates the program. In a parser, the
message a is often read-only. Thus, we do not have statements to modify the input message.

The small language is loop-free; when implementing ParDiff, we follow the standard approach
in bounded model checking [Biere et al. 2009] to unroll loops. While loop unrolling may introduce
unsoundness, ParDiff is effective in terms of bug detection (instead of sound verification) as shown
in our evaluation. The language also does not model pointers. In the implementation, we utilize an
off-the-shelf pointer analysis [Sui et al. 2011]. The language does not model function calls for the
sake of simplicity, since we can inline all functions into the main parser.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:9

Abstract Value 𝑣 := ⊤ format-irrelevant value
| 𝑐 constant
| 𝑎[𝑣] byte in message
| alen message length
| ite(𝑣1, 𝑣2, 𝑣3) if-then-else
| 𝑣1 ⊕ 𝑣2 binary operation

Fig. 4. Abstract values.

Before performing the analysis, ParDiff users need to annotate the protocol entry function,
the input message buffer a and its length alen. In practice, identifying their location is relatively
straightforward, since the parser entry usually closely follows certain network system calls (e.g.,
recv, recvfrom, and recvmsg), as shown in prior works [Caballero et al. 2009; Shi et al. 2023].

4.1.2 Format Constraints. Given a program in the language, we collect path constraints relevant
to protocol formats, referred to as the format constraint, via static symbolic analysis. The analysis
maps each variable to an abstract value 𝑣 in Figure 4. Specifically, we use ⊤ to denote a format-
irrelevant value, i.e., values that do not depend on the input buffer and its length. We use 𝑎[𝑣]
to represent a byte in a message and alen the message length. The ite constructs represent an
if-then-else constraint. With the abstract value defined, we then define the output of the analysis,
i.e., the format constraint, below.
Definition 1 (Format Constraint) A format constraint 𝜙 is a formula over a set of atomic branching
conditions6 in a parser, satisfying the following requirements: (1) Each atomic branching condition
in 𝜙 is a formula over 𝑎[𝑣] and alen, without any format-irrelevant values. (2) Negating any atomic
branching condition corresponds to a possible failure in the parsing procedure, i.e., triggering the
abort statement.
• For requirement (1), a format constraint does not contain any format-irrelevant values (i.e.,
⊤). During analysis, a format-irrelevant value is derived from a variable that is neither data-
dependent nor control-dependent on the protocol message and, thus, is an implementation-
specific variable, e.g., the variable status in Example 1 below.
• For requirement (2), each atomic condition in a format constraint must be related to some

validity checks in the code. That is, negating the condition could lead to parsing failure, i.e.,
triggering the abort statement. Otherwise, the condition is not guarding against invalid format
and, thus, is for other purposes that are irrelevant to parsing. For instance, for debugging, a
parser implementation may include a branching statement if (𝑎[0] > 0) { print(. . .); }. Since
there are no abort statements in both branches, such a branching condition (𝑎[0] > 0) does not
imply the validity of a protocol message. Thus, ParDiff will exclude it in the format constraints.

Example 1 Figure 5 shows a parser, which has three inputs, the message a, its length alen, and a
variable status that denotes the system status and is not related to parsing. The right part of the
figure shows the structure of the network message. The first a[0] + 3 bytes can be split into four
fields. The first field uses one byte and denotes the length of the third, the data, field. The second
field uses one byte and determines if the system runs in debugging mode. The third is the data
field, whose length is a[0]. The fourth is the ctrl field, whose value must be 1.

The parser contains four branching conditions at Lines 4, 7, 11, and 15. The format constraint is
𝑎[0] + 3 ≤ alen ∧ 𝑎[𝑎[0] + 2] = 1, which can be inferred from the branching conditions in line 4

6An atomic branching condition is a boolean expression used in an if-statement, and does not contain any boolean connectives
(e.g., ∧ or ∨). For example, 𝑎[0] > 1 and 𝑎[1] > 𝑎[0] are two atomic conditions in if (𝑎[0] > 1 ∧ 𝑎[1] > 𝑎[0]).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:10 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

bool global_debug;
void parse(char *a, char alen, char status) {
 char debug;
 if (a[0] + 3 > alen) { abort(); }
 else {
 debug = a[1];
 if (status > 1) { …… }
 else { …… }
 }

 if (debug == 0) { global_debug = false; }
 else { global_debug = true; }

 char ctrl = a[a[0] + 2];
 if (ctrl != 1) { abort(); }
 ……
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

data
length ctrldatadebug …

length of the input msg buffer: alen bytes

a[0] + 3 > alen false

a[0] + 3 ≤ alen
a[0] + 3 ≤ alen ∧ ⊤
a[0] + 3 ≤ alen ∧ ¬⊤
a[0] + 3 ≤ alen

a[0] + 3 ≤ alen ∧ a[1] = 0
a[0] + 3 ≤ alen ∧ a[1] ≠ 0

⓵ ⓶
⓷
⓸
⓹

⓺
⓻
⓼

a[0] + 3 ≤ alen ⓽
a[0] + 3 ≤ alen ∧ a[a[0] + 2] = 1

the first (a[0] + 3) bytes

1 byte 1 byte a[0] bytes 1 byte

data
length ctrldatadebug …

length of the input msg buffer: alen bytes

the first (a[0] + 3) bytes

1 byte 1 byte a[0] bytes 1 byte

Fig. 5. The left part shows an example of collecting format constraints. The right part shows the structure of
the network message to parse.

and line 15 as discussed in the next example. The condition at Line 7 is not relevant because it is not
related to any byte in the input message. The condition at Line 11 is not relevant, either, because
while the condition checks if 𝑎[1] = 0, neither branch aborts. That is, the validity of the message is
not related to the value of 𝑎[1]. 2

4.1.3 Collecting Format Constraints via Path Constraint Reduction. The static analysis for collecting
the format constraints is described as the inference rules in Figure 6. The inference rules define
how each statement in our language updates the program state in the form of ⌊A, 𝜙⌋ 𝑆 ⌊A′, 𝜙 ′⌋.
Here, ⌊A, 𝜙⌋ and ⌊A′, 𝜙 ′⌋ are the program states before and after the execution of statement 𝑆 ,
respectively. In a program state, 𝜙 is the collected format constraint, while the abstract storeAmaps
a program variable 𝑥 to its abstract value. Additionally, the lookup operation on A is also defined
for constants: A(𝑐) = 𝑐 for any constant 𝑐 , indicating constants retain their values. A(𝑥 ↦→ 𝑣)
represents the abstract store updated with variable 𝑥 now bound to a new abstract value 𝑣 .

The rule Init initializes the program state by mapping the variable len to the abstract value
alen and mapping all variables not related to network messages to a format-irrelevant value. The
assignment rules AssignVal, AssignBin, and AssignArr are quite standard. For instance, in the
rule AssignBin, if the abstract values of the variables 𝑣1 and 𝑣2 are 𝑣1 and 𝑣2, respectively, the
resulting abstract value will be 𝑣1 ⊕ 𝑣2. These rules follow the exact semantics of these statements.
The rule Abort resets the path constraint to false because it terminates the program and cannot
reach the exit of the program. The rule Seqencing means that we analyze the program statements
in order, using the postcondition of 𝑆1 as the precondition of 𝑆2.

The rule Branching assumes that the abstract value of the branching condition is 𝑣 , and given
the path constraint 𝜙 before the if-statement, the analysis result of the true branch is ⌊A1, 𝜙1⌋
and the result of the false branch is ⌊A2, 𝜙2⌋. The program state after a branching structure could
be in three cases. In the first two cases, one of the branches cannot reach the joint point after
the branching. Thus, we directly use the analysis result of the other branch that can reach the
joint point. A branch may not be able to reach the joint point due to two possible reasons: (1) the
path constraint of that branch is unsatisfiable, or (2) the branch contains an abort statement that
terminates the program. In the third case where both branches can reach the joint point, we merge
two abstract stores where the new variables are guarded using the ite operator, meaning that if the
condition 𝑣 is true, the abstract value of 𝑢 is A1 (𝑢) or, otherwise, is A2 (𝑢) s. The path constraint is
the disjunction of the path constraints from the two branches.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:11

A = ∅ 𝜙 = true

⌊A, 𝜙 ⌋ parse(a, alen, 𝑥1, 𝑥2, . . .) ⌊A(𝑥𝑖 ↦→ ⊤), 𝜙 ⌋
Init

A(𝑣) = 𝑣

⌊A, 𝜙 ⌋ 𝑥 ← 𝑣 ⌊A(𝑥 ↦→ 𝑣), 𝜙 ⌋
AssignVal

A(𝑣1) = 𝑣1 A(𝑣2) = 𝑣2

⌊A, 𝜙 ⌋ 𝑥 ← 𝑣1 ⊕ 𝑣2 ⌊A(𝑥 ↦→ 𝑣1 ⊕ 𝑣2), 𝜙 ⌋
AssignBin

A(𝑣) = 𝑣

⌊A, 𝜙 ⌋ 𝑥 ← 𝑎[𝑣] ⌊A(𝑥 ↦→ 𝑎[𝑣]), 𝜙 ⌋
AssignArr

⌊A, 𝜙 ⌋ abort() ⌊A, false⌋
Abort

⌊A1, 𝜙1 ⌋ 𝑆1 ⌊A2, 𝜙2 ⌋ ⌊A2, 𝜙2 ⌋ 𝑆2 ⌊A3, 𝜙3 ⌋
⌊A1, 𝜙1 ⌋ 𝑆1;𝑆2 ⌊A3, 𝜙3 ⌋

Seqencing

A(𝑣) = 𝑣 ⌊A, 𝜙 ∧ 𝑣⌋ 𝑆1 ⌊A1, 𝜙1 ⌋ ⌊A, 𝜙 ∧ ¬𝑣⌋ 𝑆2 ⌊A2, 𝜙2 ⌋

⌊A, 𝜙 ⌋ if (𝑣) {𝑆1; } else {𝑆2; }


⌊A1, 𝜙1 ⌋ 𝜙2 ≡ false
⌊A2, 𝜙2 ⌋ 𝜙1 ≡ false
⌊A3, 𝜙1 ∨ 𝜙2 ⌋ otherwise

where A3 = A(𝑢 ↦→ ite(𝑣,A1 (𝑢),A2 (𝑢)))
for 𝑢 ∈ 𝐷𝑂𝑀 (A1) ∩𝐷𝑂𝑀 (A2)

Branching

Fig. 6. Inference rules for collecting format constraints.

To compute a format constraint and remove irrelevant branching conditions, we apply the
inference rules in Figure 6 together with a set of simplification rules, including but not limited to:
• Simplify 𝑣 ∨ ⊤ (𝑣 ≠ false) into ⊤ and 𝑣 ∧ ⊤ (𝑣 ≠ true) into 𝑣 .
• Simplify any other formula containing ⊤, e.g., 𝑣 + ⊤ and 𝑣 > ⊤, into ⊤.
• Simplify (𝑣1 ∧ 𝑣2) ∨ (𝑣1 ∧ 𝑣3) into 𝑣1 ∧ (𝑣2 ∨ 𝑣3) by distributivity.
• Simplify 𝑣 ∨ ¬𝑣 into true by the law of excluded middle, and simplify 𝑣 ∨ 𝑣 or 𝑣 ∧ 𝑣 into 𝑣 .
• . . .
The first and second simplification rules define the operations on a format-irrelevant value ⊤.

Intuitively, the first simplification rule preserves format-relevant constraints while the second one
removes irrelevant ones. The two rules together ensure the first requirement in Definition 1 to be
satisfied. The third and fourth simplification rules ensure the second requirement in Definition 1 to
be satisfied. That is, given a branching condition 𝑣 , if neither the true branch nor the false branch
aborts the program, this branching condition is not format-relevant. Thus, the fourth rule simplifies
𝑣 ∨ ¬𝑣 into true. The third rule facilitates the use of the fourth rule. We illustrate the analysis
procedure in the following example.
Example 2 (Continued) Figure 5 shows the ①-⑨ steps of computing the format constraint. Initially,
the abstract value of status is set to a format-irrelevant value ⊤. In Line 4, the path constraint of
the true branch is 𝑎[0] +3 > alen (Step ①), which is then set to false due to the program-terminating
abort statement (Step ②). The initial path constraint of the false branch is 𝑎[0] + 3 ≤ alen (Step ③).

Since status = ⊤, the branching condition in Line 7 is⊤ as per the second simplification rule. The
path constraints of the true and the false branches are 𝑎[0] + 3 ≤ alen∧⊤ and 𝑎[0] + 3 ≤ alen∧¬⊤,
respectively (Steps ④ and ⑤). Both of them can be simplified into 𝑎[0] + 3 ≤ alen as ¬⊤ yields ⊤
(the second simplification rule) and 𝑎[0] +3 ≤ alen∧⊤ yields 𝑎[0] +3 ≤ alen (the first simplification
rule). Thus, the resulting path constraint after Line 8 is 𝑎[0] + 3 ≤ alen.

In Step ⑥, we compute the merged path constraint. Since the true branch at Line 4 cannot reach
the joint point, the constraint at Line 10 inherits the one from the false branch, i.e., 𝑎[0] + 3 ≤ alen.
Similarly, the path constraints at Lines 11 and 12 are 𝑎[0] + 3 ≤ alen ∧ 𝑎[1] = 0 and 𝑎[0] + 3 ≤
alen∧𝑎[1] ≠ 0. After Line 12, we merge them into 𝑎[0] + 3 ≤ alen according to the third and fourth
simplification rule. As such, we get the format-relevant path constraint 𝑎[0] + 3 ≤ alen at Line 13.
Similarly, after Line 15, we get one more constraint, i.e., 𝑎[𝑎[0] + 3] = 1. Thus, the final format
constraint is 𝑎[0] + 3 ≤ alen ∧ 𝑎[𝑎[0] + 2] = 1. 2

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:12 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

Lemma 4.1. Given a program in the language defined in Figure 3, the static analysis produces a
sound format constraint.

Proof. (Sketch.) The correctness of this lemma is implied by two facts. First, all inference rules
in Figure 6 model the exact semantics of the program statements. Second, the simplification rules
applied to the path constraint do not change its semantic meaning. □

4.2 From Format Constraints to FSM
As discussed in Section 2, it is challenging to locate implementation differences at a fine-grained
level by directly comparing two constraints either syntactically or semantically. Thus, we transform
a format constraint into an FSM. The FSM specifies how a network message is parsed byte by byte
(or field by field) as well as the constraints each byte or field needs to satisfy (Note: a field is multiple
consecutive bytes). As such, the problem of comparing two protocol implementations is reduced to
the problem of comparing two FSMs, which can then be addressed by bisimulation [Sangiorgi 1998]
and provides two advantages (see Section 4.3): (1) the implementation differences can be located at
a fine-grained level; (2) the comparison can complete in quasi-linear steps [Gentilini et al. 2003].

In what follows, we first discuss how to transform an ordered format constraint to an FSM, then
detail how we construct ordered format constraints from disordered format constraints.

4.2.1 From Ordered Format Constraint to FSM. We define the ordered format constraint below.
Definition 2 (Ordered Format Constraint) A format constraint is ordered if and only if, for any
sub-formula 𝜙1 ∧ 𝜙2 ∧ · · · ∧ 𝜙𝑛 in the format constraint, for all top-level byte 𝑎[𝑚] ∈ 𝜙𝑖 and
top-level byte 𝑎[𝑛] ∈ 𝜙 𝑗 , we have 𝑖 < 𝑗 ⇔𝑚 < 𝑛.

In the definition, a top-level byte 𝑎[𝑘] is used to form other format constraints, instead of used to
compute byte indices. For example, given the format constraint 𝑎[0] +3 ≤ alen∧𝑎[𝑎[0] +2] = 1, we
say 𝑎[0] in the first sub-constraint is a top-level byte but it is not at the top level in the second sub-
constraint. Intuitively, if constraints are faithfully extracted from parser implementation, ordered
constraints mean that the parser processes bytes in the message buffer in order (e.g., parsing byte 0
before parsing byte 1).
Example 3 The format constraint, (𝑎[1] = 1 ∨ (𝑎[0] > 1 ∧ 𝑎[1] = 3)) ∧ 𝑎[2] < 1, is ordered. 2

Example 4 The format constraint, 𝑎[0] + 3 ≤ alen ∧ 𝑎[𝑎[0] + 2] = 1, is ordered. 2

Example 5 The format constraint, (𝑎[1] = 1∨ (𝑎[1] > 1∧ 𝑎[0] = 3)) ∧ 𝑎[2] < 1, is not ordered. 2
Definition 3 (FSM Format) An FSM format contains a set of states and a set of transitions between
states. It represents the entire message format in a sequential order.
• State: Each state is represented by S𝑘 , where 𝑘 ≥ 0. The initial state S0 symbolizes the condition

before any part of the message is parsed.
• State transition: A transition is represented as a tuple (S𝑖 , 𝜙, S𝑗), where 𝑖 ≥ 0, 𝑗 > 𝑖 , and 𝜙 is a

format constraint. The transition from state S𝑖 to state S𝑗 occurs iff the constraint 𝜙 is satisfied.
Algorithm 1 shows how we recursively transform an ordered format constraint to the defined

FSM representation. We will explain how to turn unordered constraints into ordered ones later
in Section 4.2.2. As a convention, transitions in a path of an FSM should parse bytes in a network
message in order. That is, given two consecutive transitions, (S, 𝜙, S′) and (S′, 𝜙 ′, S′′), 𝜙 and 𝜙 ′

should respectively constrain two exclusive ranges of bytes and the bytes in 𝜙 precede bytes in 𝜙 ′.
Given a disjunctive constraint, Algorithm 1 creates an FSM for each sub-formula in the constraint
and returns the union of these FSMs (line 3). Given a conjunctive constraint, Algorithm 1 creates an
FSM for each sub-formula and concatenates them by connecting each final state in an FSM to each

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:13

Algorithm 1: Build FSM from Ordered Format Constraint.
1 procedure fsm(𝜙)
2 if 𝜙 ≡ 𝜙1 ∨ 𝜙2 ∨ · · · then
3 M← fsm(𝜙1) ∪ fsm(𝜙2) ∪ · · · ;
4 else if 𝜙 ≡ 𝜙1 ∧ 𝜙2 ∧ . . . then
5 M← fsm(𝜙1) ⊕ fsm(𝜙2) ⊕ · · · ;
6 else
7 M← {(S, 𝜙, S′) };
8 returnM;

𝑎 0 = 0

𝑎 0 = 1

𝑎 1 = 2

𝑎 1 = 3

𝕄 𝕄′

𝕄!

𝕄"

𝕄!
#

𝕄"
#

𝑎 0 = 1
𝑎 1 = 3

(a) (b)

𝑎 0 = 0 𝑎 1 = 2
𝑎 1 = 3

𝑎 1 = 2

Fig. 7. (a) The finite state machine generated for the constraint (𝑎[0] = 0 ∨ 𝑎[0] = 1) ∧ (𝑎[1] = 2 ∨ 𝑎[1] = 3).
(b) The deterministic counterpart.

start state in the next FSM, with a transition constraint true (line 5). Given an atomic constraint 𝜙
that does not contain any connectives, i.e., ∧ or ∨, we create a single state transition using 𝜙 as the
transition constraint.
Example 6 This example illustrates how we translate the format constraint (𝑎[0] = 0 ∨ 𝑎[0] =
1) ∧ (𝑎[1] = 2 ∨ 𝑎[1] = 3) into an FSM using Algorithm 1. As illustrated in Figure 7(a), the FSMs
M1 andM2 are respectively generated for 𝑎[0] = 0 and 𝑎[0] = 1. The FSMM is the union of the
two FSMs. The FSMM′ is created in a similar way and is connected to the FSMM. 2

Lemma 4.2. The FSM produced by Algorithm 1 is an equivalent representation of the input format
constraint 𝜙 . That is, assuming the conjunction of the state-transition constraints on each path of the
FSM (i.e., transitions from the start state to the final) is 𝜙𝑖 , we have 𝜙 ≡

∨
𝑖 𝜙𝑖 for all 𝜙𝑖 .

Proof. Given any format constraint 𝜙 , we use 𝜙𝑖 to represent the conjunction of all constraints
in an FSM path (i.e., the state transitions from the start state to the final state).

Base: If a format constraint𝜙 is an atomic constraint without any connectives∧ or∨, Algorithm 1
returns from Line 7 where it generates a single state transition constrained by 𝜙 . In this case, it is
apparent that the lemma is correct.

Induction: Consider two format constraints,𝛾 and 𝜎 as well as their corresponding FSM, denoted
as fsm(𝛾) and fsm(𝜎), which contain 𝑚 and 𝑛 paths, respectively. Let us assume that the lemma to
prove is correct. That is, we have 𝛾 ≡ ∨𝑚𝑖=1𝛾𝑖 and 𝜎 ≡ ∨𝑛𝑖=1𝜎𝑖 .

Induction Case (1): Consider the format constraint 𝛾 ∨ 𝜎 , denoted as 𝜙 . As shown by line 3 in
Algorithm 1, we have fsm(𝜙) = fsm(𝛾) ∪ fsm(𝜎), which, by definition, consists of two independent
FSMs fsm(𝛾) and fsm(𝜎) and, thus, contains and only contains𝑚 +𝑛 paths from fsm(𝛾)and fsm(𝜎).
Thus, we have

𝜙 ≡ 𝛾 ∨ 𝜎 ≡
𝑚∨
𝑖=1

𝛾𝑖 ∨
𝑛∨
𝑖=1

𝜎𝑖 ≡
𝑚+𝑛∨
𝑖=1

𝜙𝑖 , where 𝜙𝑖 =

{
𝛾𝑖 , 𝑖 ≤ 𝑚
𝜎𝑖−𝑚, 𝑖 > 𝑚

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:14 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

Thus, if the lemma is correct for 𝛾 and 𝜎 , it is also correct for 𝛾 ∨ 𝜎 .
Induction Case (2): Consider the format constraint 𝛾 ∧ 𝜎 , denoted as 𝜙 . As shown by line 5 in

Algorithm 1, we have fsm(𝜙) = fsm(𝛾) ⊕ fsm(𝜎). In fsm(𝜙), all final states of fsm(𝛾) are connected
to all start states of fsm(𝜎). Hence, fsm(𝜙) contains𝑚×𝑛 paths, and 𝜙𝑖 = 𝛾 𝑗 ∧𝜎𝑘 , where 1 ≤ 𝑗 ≤ 𝑚
and 1 ≤ 𝑘 ≤ 𝑛. Therefore, we have

𝜙 ≡ 𝛾 ∧ 𝜎 ≡
𝑚∨
𝑖=1

𝛾𝑖 ∧
𝑛∨
𝑖=1

𝜎𝑖 ≡
𝑚×𝑛∨
𝑖=1

𝜙𝑖 .

Thus, if the lemma is correct for 𝛾 and 𝜎 , it is also correct for 𝛾 ∨ 𝜎 .
Summary: if the lemma to prove is correct for 𝛾 and 𝜎 , it is also correct for 𝛾 ∧ 𝜎 and 𝛾 ∨ 𝜎 .

Thus, the lemma to prove is correct. □

As shown above, the generated FSM may be non-deterministic because there are the same
transition constraints from one state to different states (e.g. the transitions connecting M and
M′ in Figure 7(a)). As a post-processing step, we follow existing automata theories [Khoussainov
and Nerode 2012] to simplify each FSM and make it deterministic (as illustrated in Figure 7(b)).
Note that as constraints are ordered to begin with, the state transition paths in the generated FSM
are also ordered. This essentially allows us to align transition paths across FSMs from multiple
implementations (e.g., aligning the transitions related to parsing the same byte in the message
buffer) and conduct effective bi-simulation (see Section 4.3).

4.2.2 Reordering Format Constraints. In practice, a protocol parser may not rigorously follow the
stream order to parse a message. As such, the format constraint collected in the first stage may not
be ordered. In such cases, we employ Algorithm 2 to rewrite an arbitrary format constraint into an
equivalent but ordered one.

In the algorithm, Lines 5-11 perform the main operation to reorder sub-formulas in a conjunctive
constraint. Lines 5-7 are straightforward and transform a constraint like 𝑎[1] > 1 ∧ 𝑎[0] > 1
by switching the positions of 𝑎[0] > 1 and 𝑎[1] > 1. Lines 8-10 deal with a special case where
two sub-formula cannot be reordered by switching positions. For instance, switching positions of
𝑎[0] > 𝑎[2] and 𝑎[1] > 1 in the constraint 𝑎[0] > 𝑎[2] ∧ 𝑎[1] > 1 cannot make it ordered. In this
case, we regard the two as a single atomic constraint by replacing ∧ with an equivalent operator &.
Intuitively, we group constraints that cannot be ordered into groups such that groups can be ordered.
For instance, the algorithm regards the three atomic constraints in 𝑎[3] > 0∧𝑎[0] > 𝑎[2]∧𝑎[1] > 1
as two groups, one is 𝑎[3] > 0 and the other is 𝑎[0] > 𝑎[2] & 𝑎[1] > 1. The two groups can be
ordered by switching their positions, yielding (𝑎[0] > 𝑎[2] & 𝑎[1] > 1) ∧ (𝑎[3] > 0). When
translating the constraint into an FSM, Algorithm 1 produces two consecutive transitions, one
is constrained by 𝑎[0] > 𝑎[2] & 𝑎[1] > 1 and the other is constrained by 𝑎[3] > 0. As such, the
generated FSM satisfies the property that it parses a message in the stream order — in this example,
it parses the first three bytes using the first state transition and then the fourth byte using the
second transition.

Lemma 4.3. The input and output format constraints of Algorithm 2 are equivalent.

Proof. (Sketch.) Observe that in the algorithm, we only exchange the positions of two sub-
constraints, e.g., 𝜙𝑖 and 𝜙 𝑗 , if they are in a conjunctive formula. Apparently, 𝜙𝑖 ∧𝜙 𝑗 is equivalent to
𝜙 𝑗 ∧ 𝜙𝑖 . Thus, the input and output format constraints of Algorithm 2 are equivalent. □

Lemma 4.4. The output format constraint of Algorithm 2 is ordered.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:15

Algorithm 2: Reordering Format Constraint.
1 procedure reorder(𝜙)
2 if 𝜙 ≡ 𝜙1 ∨ 𝜙2 ∨ . . . then
3 reorder (𝜙1); reorder (𝜙2); . . . ;
4 else if 𝜙 ≡ 𝜙1 ∧ 𝜙2 ∧ . . . then
5 for top-level byte 𝑎[𝑚] ∈ 𝜙𝑖 , top-level byte 𝑎[𝑛] ∈ 𝜙 𝑗 such that𝑚 and 𝑛 are the minimum indices in 𝜙𝑖

and 𝜙 𝑗 , and 𝑖 < 𝑗 ∧𝑚 > 𝑛 do
6 switch the position of 𝜙𝑖 and 𝜙 𝑗 in 𝜙 ;

7 assume 𝜙 ≡ 𝜙1 ∧ 𝜙2 ∧ . . . after reordering;
8 for consecutive constraints, 𝜙 𝑗 , 𝜙 𝑗+1, . . . , such that byte indices in the constraints overlap do
9 replacing ∧ with an equivalent operator & in 𝜙 𝑗 ∧ 𝜙 𝑗+1 ∧ . . . , meaning that they are grouped;

10 assume 𝜙 ≡ 𝜙1 ∧ 𝜙2 ∧ . . . after grouping;
11 reorder (𝜙1); reorder (𝜙2); . . . ;
12 else

/* do nothing for constraints without ∧ and ∨ */

Algorithm 3: Differentiating Formats by Bisimulation.
1 Procedure bisim(A pair of states S1, S2 fromM1,M2)
2 if one of S1, S2 is a final state then
3 assume S1 is a final state and S2 is not;
4 any outgoing constraint of S2 implies a difference between two implementations;
5 return;

6 foreach state transition (S1, 𝜙1, S′1) ∈ M1 do
7 find (S2, 𝜙2, S′2) ∈ M2 such that 𝜙1 ≡ 𝜙2;
8 if found then
9 bisim(S′1, S

′
2);

10 else
11 find differences in 𝜙1 and 𝜙2;

Proof. (Sketch.) The correctness of this lemma is implied by two facts. First, Lines 5–10 in
the algorithm reorder conjunctive formula strictly following Definition 2. Second, the recursive
procedure in the algorithm reorders all conjunctive formulas in the input format constraint. □

4.3 Locating Implementation Differences
Algorithm 3 shows how we compare two FSMs by bisimulation. The basic idea of bisimulation is
that starting from the start states of two FSMs, we try to match two states in two FSMs that can
simulate each other. The matching is governed by the format constraint of transitions. As shown by
lines 6-11 in Algorithm 3, given a state transition (S1, 𝜙1, S

′
1) in one FSM, we try to find a transition

(S2, 𝜙2, S
′
2) in the other FSM such that 𝜙1 ≡ 𝜙2. If we find such an equivalent transition, we continue

the bisimulation from the states S′1 and S′2 (line 9). If we cannot find such an equivalent transition,
it means there exist some differences between the two protocol parsers under comparison. In this
case, we will compare the outgoing transition constraints of the states S1 and S2 (line 11). During
the bisimulation, if one of the FSMs reaches the final state but the other does not, it means that the
two FSMs are not equivalent and implies implementation differences in the protocol parsers (see
lines 2-5 in Algorithm 3). The correctness of Algorithm 3 is stated below, which is a direct result of
the existing theory of bisimulation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:16 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

Lemma 4.5. Algorithm 3 guarantees to find the differences between a pair of state transitions in two
FSMs if the two FSMs are not equivalent [Gentilini et al. 2003].

Example 7 Consider the two FSMs in our motivating example (see Figure 2). We input the two
start states, S0 and S′0 into Algorithm 3. For the two outgoing transitions from the state S0, we
can respectively find two transitions in the other FSM from the state S′0 such that the transition
constraints are equivalent (lines 6-7 in Algorithm 3). We then bi-simulate the two FSMs from S1 and
S′1 (lines 8-9 in Algorithm 3). Since the two outgoing transitions from S1 and S′1 are not equivalent,
we find the differences in the transition constraints, i.e., 𝑎[1] ≤ 𝑎𝑙𝑒𝑛 vs. 𝑎[1] + 2 ≤ 𝑎𝑙𝑒𝑛, to locate
the implementation differences. 2

From FSM Differences to Implementation Differences and Bugs. Since the transition con-
straints obtained from the last step correspond to branching conditions in the code, we can then
locate the differences between the two implementations. For easier localization, we keep a record of
the source code positions at which these constraints are generated during the first stage. As demon-
strated in our motivating example (Section 2), such differences often imply some bugs in protocol
parsers. Our evaluation shows that ParDiff found 41 bugs, with 25 confirmed or fixed (Section 5.6).

4.4 Soundness
Lemmas 4.1–4.5 state that given protocol parsers written in the small language defined in Figure 3,
our approach is sound and guaranteed to find differences between the parsers. The lemmas prove
the following facts:
• Lemma 4.1 states that we generate a sound format constraint from the protocol parser;
• Lemmas 4.2–4.4 state that we translate each format constraint to an FSM, which is an equivalent

representation of the format constraint;
• Lemma 4.5 states that by bisimulation, we can find the different state transitions if two FSMs

are not equivalent.
In practice, we have to handle common program structures not included in the abstract language,
which leads to a soundy [Livshits et al. 2015] implementation of ParDiff. In other words, ParDiff
shares the same reasonable assumptions and standard approaches (to handle challenging program
structures) with previous bug-finding techniques, e.g., [Babic and Hu 2008; Shi et al. 2018; Xie
and Aiken 2005]. For example, in our implementation, we unroll each loop twice in the control
flow graphs and call graphs. Following the aforementioned bug-finding techniques, we currently
have not modeled inline assembly and call statements that invoke non-standard library APIs. For
pointer analysis, we adopt Sui et al. [2011]’s approach to resolve pointer relations. The soundy
(i.e., reasonably unsound) operations in the implementation do lead to false positives or negatives,
which, however, are acceptable as we show in the evaluation. In total, ParDiff lets us find 41 bugs
in mature protocol implementations.

5 EVALUATION
We implement our tool ParDiff on top of the LLVM (12.0.1) compiler infrastructure [Lattner and
Adve 2004] and the Z3 (4.8.12) SMT solver [De Moura and Bjørner 2008]. The current implementation
of ParDiff works on protocol parsers written in C, but note that our approach is general for other
common languages. Given a parser, we compile its source code into LLVM bitcode and send the
bitcode to ParDiff for further processing. In ParDiff, Z3 is used to represent abstract values
as symbolic expressions and check the equivalence of constraints. With the implementation, we
design a series of experiments to answer the following four research questions:
• RQ1: How effective are the three stages of ParDiff?

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:17

Table 1. Protocols and Their Codebases for Evaluation.

Protocols Codebases Size(loc) Description

BABEL FRR vs. BABEL 9K vs. 10K Distance-vector routing protocol
BFD FRR vs. BIRD 13K vs. 2K Bidirectional forwarding detection
BGP FRR vs. BIRD 2113k vs. 9k Border gateway protocol

OSPF2 FRR vs. BIRD 72K vs. 14K Open shortest path first
OSPF3 FRR vs. BIRD 38K vs. 14K Open shortest path first v3
RADV radvd vs. BIRD 14K vs.2K Router advertisements
RIP1 FRR vs. BIRD 11K vs. 3K Routing information protocol v1
RIP2 FRR vs. BIRD 11K vs. 3K Routing information protocol v2

RIPng FRR vs. BIRD 8K vs. 3K Routing information protocol for ipv6
VRRP FRR vs. Vrrpd 7K vs. 4k Virtual router redundancy protocol

IPv4 lwip vs. Linux/ipv4 8K vs. 107K Internet protocol v4
IPv6 lwip vs. Linux/ipv6 7K vs. 76K Internet protocol v6

ICMP lwip vs. Linux/ipv4 8K vs. 107K Internet control message protocol
ICMP6 lwip vs. Linux/ipv6 7K vs. 76K Internet control message protocol v6

• RQ2: How efficient are the three stages of ParDiff?
• RQ3: How effective is ParDiff in detecting bugs?
• RQ4: What are the root causes of the discovered bugs?

5.1 Experimental Setup
To create a set of protocols with multiple implementations, we refer to an index of open-source
routing platforms [contributors 2022]. From this list, we apply a set of criteria to refine our selection:
the projects must be implemented in C programming language and actively maintained within
the past year. This results in the selection of FRRouting [community 2023] and BIRD [Martin et al.
2023], two open-source routing protocol suites. Next, for every protocol implemented in a suite,
we find an alternate implementation that also meets the aforementioned criteria for comparison.
Then we obtain a dataset consisting of ten network protocols, listed in the first ten rows in Table 1.
Moreover, we incorporate four well-known protocols from the TCP/IP protocol suite. Finally, we
get a dataset with 14 network protocols, each with two distinct implementations. The protocol and
codebase information is shown in Table 1.
To answer RQ1, we run ParDiff on our dataset, and test the effectiveness of each stage. To evaluate
the effectiveness of path constraint reduction (Stage 1), we record the number of LLVM instructions
involved in computing the format constraint, with and without the constraint reduction algorithm.
To evaluate the effectiveness of FSM generation and simplification (Stage 2), we record the number of
FSM nodes and edges before and after FSM simplification. We then check the differences generated
by the bisimulation to identify bugs (Stage 3). For each protocol we test, we record the number
of differences, the number of differences caused by bugs, the number of differences caused by
implementation options, and the number of unique bugs implied by the differences, in order to
gauge the effectiveness of ParDiff. Additionally, we record the number of atomic branch conditions
(cf. Definition 1) within each difference as a measure of human efforts in bug localization.
To answer RQ2, for each protocol, we record the execution time of each stage, together with the
total time of our analysis, to measure the efficiency of our tool.
To answerRQ3, we evaluate our approach by comparing it to both static and dynamic analysis tools.
In terms of static analysis tool comparisons, we conduct tests with existing static differential analysis,
such as differential symbolic execution [Lahiri et al. 2012, 2013; Person et al. 2008, 2011; Ramos
and Engler 2015; Rutledge and Orso 2022]. These techniques are indeed effective for identifying
discrepancies across different versions of the same software by leveraging shared structures and code
snippets. However, as discussed previously, they struggle with comparing independent protocol

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:18 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

2×105

4×105

6×105

Code#1 w/o CR Code#1 w/ CR Code#2 w/o CR Code#2 w/ CR

BABEL BFD BGP OSPFv2 OSPFv3 RADV RIP1 RIP2 RIPng VRRP IPV4 IPV6 ICMP ICMP6
0×103
1×103
2×103

In

st
ru

ct
io

ns

Fig. 8. Instructions used to compute format constraints, with and without constraint reduction (CR).

implementations, because the shared code structures that enable the efficiency of differential
symbolic execution are mostly absent. As such, these tools need exhaustive and independent
analysis on each implementation and fail to finish the analysis due to the path explosion problem.
Thus, we omit the evaluation of these tools.

We also compare our fine-grained approach with the coarse-grained use of SMT solvers. The
coarse-grained way monolithically queries the satisfiability of two format constraints 𝜙1 and 𝜙2,
i.e., check if 𝜙1 ≠ 𝜙2. If the query is satisfiable, we count the number of atomic branch conditions
(cf. Definition 1) in both implementations, which is a measure of the manual effort to precisely
locate the root cause (sub)condition in the program leading to the divergence.

As for dynamic analysis tools, we compare our tool with a differential fuzzing tool specially
designed for protocol parsers, i.e., DPIFuzz [Reen and Rossow 2020]. While there are a few other
differential fuzzing tools (e.g., [Petsios et al. 2017; Yang et al. 2021; Zou et al. 2021]), they are mostly
domain-specific and have special designs for input generation and mutations, which cannot be
directly applied to general network protocol parsers. Therefore, we select DPIFuzz, whose mutators
are specifically designed for network protocol packets. We use the packet-level mutations and the
execution behaviors (including abort or return in advance, return values of protocol parsers, etc) as
fuzzing feedback. We run DPIFuzz with the first ten protocols in our dataset (Table 1), excluding
IPv4, IPv6, ICMP, and ICMP6, which are kernel-space implementations (note that DPIFuzz is a
user-space fuzzer that does not support fuzzing kernel code). For each protocol, we execute DPIFuzz
in two settings: first, run with equal duration with ParDiff (that is, if ParDiff operates for x
seconds, we also run DPIFuzz for x seconds). We repeat this procedure ten times to avoid random
factors. Second, run each protocol for 24 hours, and repeat three times.
To answer RQ4, we analyze the root causes of all bugs we found and group them into three
categories. We also provide case studies and discuss their potential impacts.

5.2 RQ1: Effectiveness of Each Stage in ParDiff
Stage 1: Collecting Format Constraints via Path Constraint Reduction. The numbers of
LLVM instructions involved in computing format constraints, with and without our reduction
algorithm, are shown in Figure 8. For all protocol implementations, the number of instructions
has significantly decreased after applying path constraint reduction. This indicates that the path
constraint reduction process is effective in reducing the complexity of the codebases, with an
average of 99.57%.
Stage 2: From Format Constraints to FSM with Simplification. Table 2 indicates that the FSM
simplification process in Stage 2 further reduces the complexity of each FSM after path constraint
reduction in Stage 1. On average, there is an approximately 30.0% reduction in the number of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:19

Table 2. Statistic of FSM node and edge number. Notably, the large differences in RADV and IPv6 protocols
are due to incomplete implementations in the corresponding codebase.

Protocols FSM 1 FSM 2

#Before Simplify #After Simplify #Before Simplify #After Simplify

BABEL 1307 / 1318 641 / 652 538 / 557 227 / 240
BFD 19 / 20 19 / 20 71 / 72 65 / 66
BGP 47 / 50 46 / 49 121 / 150 74 / 86

OSPFv2 210 / 215 132 / 135 920 / 923 368 / 369
OSPFv3 367 / 428 127 / 188 544 / 543 374 / 373
RADV 421 / 466 370 / 395 4 / 4 4 / 4
RIP1 76 / 80 59 / 63 50 / 49 36 / 35
RIP2 75 / 76 44 / 44 19 / 21 19 / 21

RIPng 176 / 191 111 / 126 29 / 35 20 / 25
VRRP 48 / 48 48 / 48 15 / 14 15 / 14
IPV4 8 / 11 7 / 8 15 / 15 14 / 14
IPV6 6 / 5 4 / 3 358 / 376 150 / 158
ICMP 12 / 11 12 / 11 25 / 24 25 / 24
ICMP6 11 / 10 11 / 10 22 / 21 22 / 21

states and a 23.06% reduction in the number of state transitions. Particularly, the most significant
reduction is seen in the second FSM of the OSPFv2 protocol with approximately 60% fewer nodes
and 60% fewer edges.
Stage 3: Locating Implementation Differences. For each FSM difference we generated, we
manually identify whether it is a true difference, i.e., a real semantic difference. We consider other
differences as false positives, which are due to some inaccuracies of our tool, like the inherent
limitation of pointer analysis and loop analysis. Additionally, for each true difference, we identify
whether it is a bug, or it is due to implementation options allowed by protocol specifications. As
shown in Table 4(a), ParDiff successfully identified 41 unique bugs in 14 network protocols, with
a precision of 92.8%. For each identified bug, we generated either a bug report or a fix patch. Till
submission, 25 of these bugs have been confirmed by the developers. Notably, we have patched 11
of these bugs, which have already been merged or approved by the developers in the corresponding
open-source repository.

Each FSM difference is made up of several atomic branching conditions (see Definition 1). We
record the number of atomic branch conditions in each difference and show the result in the
last column of Table 4(a). Among the 14 protocols, there are 827 atomic conditions within 264
differences. As such, developers need to examine 3.13 atomic conditions on average for every
difference detected. Since each atomic condition corresponds to one source code line, developers
would examine approximately 3.13 source lines per difference (assuming they are familiar with the
protocols).

5.3 RQ2: Efficiency of Each Stage in ParDiff
We executed ParDiff on all protocols in our dataset and recorded the total analysis time. Addition-
ally, we measured the time ParDiff took for each of the three stages separately. As presented in
Figure 9, ParDiff can complete the analysis in an average of 50.48 secs, with 74.15% of its time
extracting formats from the source code, around 22.37% generating FSM, and only 1.97% conducting
the differentiation. It supports that by applying path constraint reduction in stage 1 and FSM
simplification in stage 2, ParDiff can differentiate formats and generate differences very quickly.

5.4 RQ3-1: Comparing ParDiff to Coarse-grained use of SMT Solver
As shown in Table 3, for each protocol, the SMT Solver determines the two constraints, referred to
as 𝜙1 and 𝜙2, are not equivalent. However, comparing these constraints directly merely confirms the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:20 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

BABEL
BFD
BGP
OSPFv2
OSPFv3
RADV
RIP1
RIP2
RIPng
VRRP
IPV4
IPV6
ICMP
ICMP6

0

50

100

150

200

BABEL
BFD
BGP
OSPFv2
OSPFv3
RADV
RIP1
RIP2
RIPng
VRRP
IPV4
IPV6
ICMP
ICMP6

0%

20%

40%

60%

80%

100%
Stage 1 Stage 2 Stage 3

Fig. 9. Time cost (seconds) and its decomposition.

Table 3. Compare with coarse-grained use of SMT Solver. (Treat all constraints as a whole formula to query.)

Protocols Equivalence Checking #Atomic Cond. 1 #Atomic Cond. 2

BABEL Not equal 296 648
BFD Not equal 14 26
BGP Not equal 49 93

OSPF2 Not equal 166 305
OSPF3 Not equal 93 134
RADV Not equal 111 6
RIP1 Not equal 52 22
RIP2 Not equal 34 16

RIPng Not equal 166 28
VRRP Not equal 21 10

IPv4 Not equal 11 15
IPv6 Not equal 3 97

ICMP Not equal 11 55
ICMP6 Not equal 20 44

presence of at least one difference between the two implementations. To precisely locate the origins
of these discrepancies or potential bugs, we must delve deeper and inspect each individual atomic
condition within both 𝜙1 and 𝜙2. The count of these atomic conditions for each implementation
is recorded in Table 3. Across the 14 protocols, there are a total of 2515 atomic conditions for 14
identified differences. Hence, developers need to carefully check approximately 179.6 lines per
difference to pinpoint potential bugs. This number significantly exceeds the number of 3.13 lines
per difference provided by our tool, representing a significant challenge that requires nontrivial
human effort.

5.5 RQ3-2: Comparing ParDiff to DPIFuzz
We compare the two tools from two perspectives: the number of discovered bugs and the efficiency
of bug finding.
Bugs Identified. As shown in Table 4, our tool detects a total of 41 bugs, 40 of which are found in
the first ten network protocols, while DPIFuzz can only detect 25 bugs (detected by at least one of
the three runs). We observe that DPIFuzz has difficulty finding bugs in long program paths due
to the difficulty of generating inputs that satisfy all the complex constraints in deep paths. It is
worth mentioning that, as shown in Table 5, bugs with ID#42 to 45 can be triggered by at least one
run of DPIFuzz, but are not detected by our tool. This is because, in the current implementation,
if our tool detects a difference on a path, it stops bisimulation on that path. Hence, we miss the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:21

Table 4. Precision and # Bugs Detected.
(a) ParDiff

Protocols #Diff True Diff FP #Bug #Atomic Cond.
#Diff. Bug #Diff. Opt.

BABEL 81 37 39 5 (6.1%) 18 295
BFD 2 2 0 0 (0.0%) 1 2
BGP 27 18 0 9 (33.3%) 3 75

RADV 4 2 2 0 (0.0%) 2 4
RIP1 19 11 8 0 (0.0%) 3 32
RIP2 14 6 8 0 (0.0%) 2 14

RIPng 16 12 4 0 (0.0%) 2 19
OSPFv2 25 23 0 2 (8.0%) 4 79
OSPFv3 26 3 23 0 (0.0%) 1 161
VRRP 12 11 0 1 (8.3%) 4 58

IPV4 8 0 6 2 (25.0%) 0 24
IPV6 7 7 0 0 (0.0%) 1 13
ICMP 12 0 12 0 (0.0%) 0 21
ICMP6 11 0 11 0 (0.0%) 0 30

Total 264 132 113 19 (7.2%) 41 827

(b) DPIFuzz

Protocols RUN with Equal Time RUN until Coverage

#Input #Bug #Input #Bug

BABEL 3.50 ± 1.28 0.00 ± 0.00 49.33 ± 42.19 5.00 ± 4.08
BFD 0.50 ± 0.50 0.20 ± 0.40 9.00 ± 2.83 1.00 ± 0.00
BGP 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

OSPFv2 0.00 ± 0.00 0.00 ± 0.00 5.67 ± 4.50 1.00 ± 0.00
OSPFv3 0.00 ± 0.00 0.00 ± 0.00 5.33 ± 2.62 1.00 ± 0.00
RADV 0.40 ± 0.49 0.40 ± 0.49 0.67 ± 0.47 0.67 ± 0.47
RIP1 1.00 ± 0.77 0.20 ± 0.40 23.00± 0.82 2.00 ± 0.00
RIP2 0.00 ± 0.00 0.00 ± 0.00 45.00± 12.98 2.33 ± 0.94

RIPng 0.00 ± 0.00 0.00 ± 0.00 111.67± 12.40 3.00 ± 0.00
VRRP 0.00 ± 0.00 0.00 ± 0.00 3.00 ± 0.00 2.00 ± 0.00

opportunity of finding other bugs on that path after that difference. This could be solved by forcing
the tool to continue bisimulation along the path. We put this into our future work. Additionally,
our tool exhibits higher stability in bug detection. In contrast, the bugs DPIFuzz can trigger are
quite random, only 12 of the 25 bugs are detected in all three runs.

Besides, we record the time each bug is detected by ParDiff and DPIFuzz. Particularly, we record
the time taken by DPIFuzz to trigger the bugs in each of its three runs. We use T/O to indicate
timeout, which means this bug isn’t detected in an execution. The result shows that DPIFuzz spends
much longer time than ParDiff to detect each bug. Besides, due to the innate randomness in
fuzzing tools, DPIFuzz cannot stably detect most bugs.

Efficiency. We compare the efficiency of DPIFuzz with ParDiff in two settings: running DPIFuzz
with the same time budget as ParDiff and running DPIFuzz for 24 hours.

We first study the capability of finding bugs given equal time to both tools. For each protocol, we
execute DPIFuzz ten times, matching the total run time of ParDiff for each iteration. We keep track
of the number of inputs and the bugs identified in every individual run. The mean and standard
deviation of the results are shown in the left half part of Table 4(b), which indicates that ParDiff
can hardly find any bug given the same time as our tool. Please note that we do realize this is due
to the different nature of the tools and these numbers are for reference only.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:22 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

1
2
3
4
5
6
7
8
9

10
11
12
13

void parse_packet(const unsigned char *packet,
int packetlen, …)

{
char *message = packet + 4 + i;
type = message[0];
if (type == MESSAGE_REQUEST) {

…
+ int rc = parse_request_subtlv(message[2], …);
+ if (rc<0)
+ goto done;

}
}
+ static int parse_request_subtlv(…){…};

1
2
3
4
5
6
7
8
9

10
11
12
13

static int parse_hello_subtlv(const
unsigned char *a, int alen, …)

{
int i = 0;
while (i < alen) {

- type = a[0];
+ type = a[i];

if (type ==0) {
i++; continue;

}
…

}
}

1
2
3
4
5
6
7
8

ssize_t vrrp_pkt_parse_datagram(uint8_t *buf, size_t read, struct vrrp_pkt **pkt …)
{

VRRP_PKT_VCHECK(read >= sizeof(struct ip),..);
struct ip *ip = (struct ip *)buf;

+ VRRP_PKT_VCHECK(read > (ip->ip_hl << 2));
*pkt = (struct vrrp_pkt *)(buf + (ip->ip_hl << 2));
…

}
(a) Case 1

(a) Case 1 (b) Case 2

Fig. 10. Case studies. (a) Incorrect parse sub-TLVs in BABEL. (b) Miss handling sub-TLVs in MESSAGE
REQUEST TLVs.

Second, for each protocol, we run DPIFuzz for 24 hours and repeat three times. In each execution,
we record the number of inputs and bugs. The mean and standard deviation of three runs are shown
in the right half of Table 4(b). For each bug, we record the precise time when DPIFuzz first produces
an input associated with this bug. Some bugs can be found in some runs but not in others, so we
record the bug trigger time for all three runs. The average bug triggering time for DPIFuzz is 2667s,
however, ParDiff only needs an average of 49s to detect each bug. Obviously, it takes a much
longer time for DPIFuzz to trigger bugs than ParDiff.

5.6 RQ4: Root Cause of Discovered Bugs
We classify the 41 bugs discovered by ParDiff into three categories based on their root causes.
Category 1: Incorrect bound checks on specific fields (25 / 41). Bugs in this category imply
that developers either miss checks or use incorrect checks on certain packet fields. The motivating
example depicted in Figure 1 falls within this category. Such bugs can potentially lead to memory
issues, delays in discarding malicious packets, and even more serious security risks.
Category 2: Incorrect parsing on specific packet types (9 / 41). This category refers to bugs
when developers incorrectly handle the parsing of specific packet types. These bugs may arise from
misunderstandings of the protocol specifications or coding errors in implementations. The con-
sequences of such bugs can range from minor inconsistencies in protocol behavior to severe issues
affecting the stability of the network. The following example illustrates a bug within this category:

Figure 10(a) shows a bug (ID#1 in Table 5) discovered by our tool in project BABEL. The function
in the figure parses the sub-TLVs in the hello packet. The number of sub-TLVs is determined by
alen, requiring a loop to visit each sub-TLV sequentially. However, in line 5, the variable type
is always assigned with the type of the first sub-TLV, resulting in the parsing of all subsequent
sub-TLVs that are based on the type of the first one. Consequently, the original implementation
incorrectly parses all sub-TLVs following the first one. In the same source code file, we have found
four additional similar issues and reported all these bugs to developers. Currently, all these bugs
have been confirmed and resolved by the developers.
Category 3: Incomplete parsing on specific packet types (7 / 41). This category refers to the
bugs when developers miss parsing some portions of certain packet types. Such bugs may arise
due to an incomplete or incorrect understanding of the protocol specifications, compatibility issues
stemming from protocol updates, or simply as a result of oversight during implementation. The
following example falls within this category:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:23

Table 5. Network protocol bug list. We use T/O to indicate timeout, and N/A for not applicable.

ID Proto. Root Causes ParDiff DPIFuzz Status Time. First Time. DPIFuzz

ParDiff 1st RUN 2nd RUN 3rd RUN

1 BABEL Incorrect parse hello sub-TLVs. ✓ ✓ Confirmed 92s 1907s 13796s T/O
2 BABEL Incorrect parse ihu sub-TLVs. ✓ ✓ Confirmed 92s 5972s T/O T/O
3 BABEL Incorrect parse request sub-TLVs. ✓ × Confirmed 92s T/O T/O T/O
4 BABEL Incorrect parse seq req sub-TLVs. ✓ × Confirmed 92s T/O T/O T/O
5 BABEL Incorrect parse other sub-TLVs. ✓ × Confirmed 92s T/O T/O T/O
6 BABEL Incorrect ignoring nonzero flag bits. ✓ ✓ PR merged 92s 5008s T/O T/O
7 BABEL Miss handle ack req sub-TLVs. ✓ ✓ PR approved 92s 465s 8956s T/O
8 BABEL Miss handle ack sub-TLVs. ✓ ✓ PR approved 92s 9052s T/O T/O
9 BABEL Miss handle router ID sub-TLVs. ✓ ✓ PR approved 92s 8433s T/O T/O
10 BABEL Miss handle NH sub-TLVs. ✓ ✓ PR approved 92s 2209s 12016s T/O
11 BABEL Miss handle seq req sub-TLVs. ✓ ✓ PR approved 92s 1008s T/O T/O
12 BABEL Miss handle request sub-TLVs. ✓ ✓ PR merged 92s 1033s 9889s T/O
13 BABEL Incorrect router-id checking. ✓ × Confirmed 92s T/O T/O T/O
14 BABEL Incorrect checking in route update. ✓ × Confirmed 92s T/O T/O T/O
15 BABEL Incorrect handle route retractions. ✓ × Confirmed 92s T/O T/O T/O
16 BABEL Miss non-zero AE check in NH. ✓ ✓ PR merged 92s 2204s 4140s T/O
17 BABEL Miss non-zero AE check in Seq Req. ✓ × PR merged 92s T/O T/O T/O
18 BABEL Incorrect length check. ✓ × Confirmed 92s T/O T/O T/O
19 BFD Miss bug version check. ✓ × PR merged 2s T/O T/O T/O
20 BGP Miss length check in notification. ✓ × Confirmed 7s T/O T/O T/O
21 BGP Miss asn check in open type. ✓ × Reported 7s T/O T/O T/O
22 BGP Unhandle field length extension. ✓ × Reported 7s T/O T/O T/O
23 RADV Miss checkings of Hop Limit. ✓ × Reported 75s T/O T/O T/O
24 RADV Miss checkings of received RAs. ✓ ✓ Reported 75s 10s T/O 56s
25 OSPFv2 Miss non-zero check of router-id. ✓ × Reported 87s T/O T/O T/O
26 OSPFv2 Miss length check in type2. ✓ × Reported 87s T/O T/O T/O
27 OSPFv2 Miss length check in type3. ✓ × Reported 87s T/O T/O T/O
28 OSPFv2 Miss check lsa header length. ✓ ✓ Reported 87s 1334s 2003s 679s
29 OSPFv3 Miss non-zero check of router-id. ✓ × Reported 73s T/O T/O T/O
30 RIP1 Miss non-zero field check. ✓ ✓ PR approved 32s 912s 1470s 1058s
31 RIP1 Not handle multiple rte. ✓ ✓ Confirmed 32s 194s 31s 16s
32 RIP1 Incomplete destination check. ✓ × Reported 32s T/O T/O T/O
33 RIP2 Not handle multiple rte. ✓ ✓ Confirmed 26s 1453s 1560s 2463s
34 RIP2 Incomplete destination check. ✓ ✓ Reported 26s 2706s 22069s 5956s
35 RIPng Not handle multiple rte. ✓ ✓ Confirmed 4s 46s 570s 292s
36 RIPng Incomplete destination check. ✓ ✓ Reported 4s 1515s 717s 733s
37 VRRP Miss type check. ✓ × Reported 1s T/O T/O T/O
38 VRRP Incomplete payload length check. ✓ × Reported 1s T/O T/O T/O
39 VRRP Miss check read length. ✓ ✓ Reported 1s 10s 36s 47s
40 VRRP Buffer over-read. ✓ ✓ Reported 1s 92s 108s 26s
41 IPV6 Incorrect length check. ✓ × Reported 17s N/A N/A N/A

42 BFD Miss handle authentication. × ✓ Confirmed T/O 18s 11s 15s
43 OSPFv3 Miss check lsa header length. × ✓ Reported T/O 841s 826s 668s
43 RIP2 Incorrect subnet mask check. × ✓ Reported T/O 3176s T/O T/O
44 RIP2 Metric range check. × ✓ Reported T/O T/O 4686s T/O
45 RIPng Incorrect nexthop rte check. × ✓ Reported T/O 721s 712s 744s

Figure 10(b) shows part of a pull request (ID#12 in Table 5) we submitted to fix a bug in FRRouting’s
BABEL implementation. The buggy version misses implementing some constraint checks while
dealing with MESSAGE REQUEST packets, leading to an incomplete input validation checking.
This pull request has already been merged by the developers.

6 RELATEDWORK
Differential Symbolic Analysis. Symbolic-execution-based differential testing tools primarily
focus on syntactically similar programs (e.g., programs evolved from the same base version).
These tools often rely on matching code snippets and data structures to reduce the symbolic
execution overhead. They identify similar or divergent code segments through static analysis [Person
et al. 2008, 2011; Rutledge and Orso 2022], branch divergence during symbolic execution [Cadar
and Palikareva 2014; Palikareva et al. 2016], or CFG patterns [Malı́k and Vojnar 2021]. However,
these tools can struggle if programs from independent projects are substantially different in their
syntactic structures. Contrarily, ParDiff provides a complementary approach for analyzing different
implementations, even when their syntactic structures vary significantly.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

137:24 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

Existing differential model checking techniques [Ferreira et al. 2021; Fiterău-Broştean et al.
2016]are mainly used to compare high-level state-machine representations of protocols. These
are effective in pinpointing operational differences between different protocol versions or imple-
mentations. For instance, Prognosis [Ferreira et al. 2021] models state transitions and message
exchange patterns (e.g. TCP 3-way handshake) of TCP, as well as QUIC’s flow control mechanisms,
for comparison. While these methods are well-suited for studying the overall logic of protocol
implementations, they might not thoroughly check the robustness of individual parsers when faced
with malformed or unexpected input.
Fuzzing and Differential Fuzzing. Traditional fuzzing tools, like BooFuzz [Pereyda 2023], pri-
marily aim to uncover crashes or assertion failures, rather than semantic bugs. Differential fuzzing
explores potential behavior divergence between two programs and is capable of detecting semantic
bugs. However, these techniques [Yang et al. 2021; Zou et al. 2021] encounter several challenges.
Firstly, their effectiveness strongly depends on the quality of the inputs and may suffer from low
coverage of code. Secondly, substantial human effort is needed to identify and locate bugs from a
large number of inputs. Lastly, these techniques tend to be slow, often taking several hours or days
to converge. To mitigate these challenges, we propose ParDiff, a high-coverage bug detection
technique with efficient bug identification and localization.
Hybrid Techniques. Symbolic execution and fuzzing can be combined to identify semantic
differences between two program versions. HyDiff [Noller et al. 2020] leverages both dynamic
symbolic execution and concolic testing to find regression bugs. These tools also suffer from the
limitations of applying differential symbolic execution in syntactically disparate implementations.
Input Grammar Synthesis. Input grammar synthesis techniques [Bastani et al. 2017; Gopinath
et al. 2020; Lin et al. 2010] are widely used to generate grammar describing the expected syntactic
structure of program inputs. These grammars help ensure that inputs adhere to specified formats and
can be valuable for generating test inputs. However, it is worth noting that these techniques often
suffer from performance issues [Bendrissou et al. 2022]. Furthermore, input grammar synthesis
techniques typically target context-free grammars, which imposes certain limitations on their
applicability. In contrast, protocol formats include semantic constraints among different bytes in a
protocol message. These constraints may involve arithmetic operations, bit-level manipulations, or
context-dependent rules that go beyond the capabilities of simple context-free grammars.

7 CONCLUSION
This work proposes ParDiff to detect bugs hidden in network protocol parsers, which could hardly
be detected by conventional tools. ParDiff extracts normalized protocol formats as finite state
machines from different implementations of the same protocol, and leverages differential analysis to
locate bugs in the code. ParDiff successfully detects 41 semantic bugs, with 25 confirmed or fixed.

ACKNOWLEDGMENTS
We thank Benjamin Delaware and Zhuo Zhang for insightful discussions. We also thank the
anonymous reviewers for their comments and suggestions. This work was supported in part by
DARPA VSPELLS HR001120S0058, NSF1901242 and 1910300, ONR N000141712045, N000141410468
and N000141712947. Any opinions, findings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.

REFERENCES
Fernando Arnaboldi. 2023. XDiFF. https://github.com/IOActive/XDiFF.
Domagoj Babic and Alan J. Hu. 2008. Calysto: scalable and precise extended static checking. In Proceedings of the 30th

International Conference on Software Engineering (ICSE ’08). ACM, 211–220. https://doi.org/10.1145/1368088.1368118

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

https://github.com/IOActive/XDiFF
https://doi.org/10.1145/1368088.1368118

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:25

Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDiff: scaling program equivalence checking via iterative
abstraction and refinement of common code. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20). ACM, 13–24. https:
//doi.org/10.1145/3368089.3409757

Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. 2011. A decade of software model checking with SLAM. Commun.
ACM 54, 7 (2011), 68–76. https://doi.org/10.1145/1965724.1965743

Wenlei Bao, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, and P Sadayappan. 2016. PolyCheck: dynamic
verification of iteration space transformations on affine programs. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’16). ACM, 539–554. https://doi.org/10.1145/2837614.2837656

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing Program Input Grammars. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’17). ACM, 95–110.
https://doi.org/10.1145/3062341.3062349

Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller. 2022. “Synthesizing Input Grammars”: A Replication Study. In
Proceedings of the th International Conference on Software Engineering (PLDI ’22). ACM, 260–268. https://doi.org/10.1145/
3519939.3523716

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. 2009. Bounded Model Checking.
In Handbook of Satisfiability, Vol. 185. IOS Press, 457–481. https://doi.org/10.3233/978-1-58603-929-5-457

Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. 2009. Dispatcher: Enabling active botnet infiltration
using automatic protocol reverse-engineering. In Proceedings of the 16th ACM conference on Computer and communications
security (CCS ’09). ACM, 621–634. https://doi.org/10.1145/1653662.1653737

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of the 8th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’08). USENIX, 209–224. https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-
generation-high-coverage-tests-complex-systems

Cristian Cadar and Hristina Palikareva. 2014. Shadow symbolic execution for better testing of evolving software. In
Companion Proceedings of the 36th International Conference on Software Engineering (ICSE Companion ’14). ACM, 432–435.
https://doi.org/10.1145/2591062.2591104

Chia Yuan Cho, Vijay D’Silva, and Dawn Song. 2013. BLITZ: Compositional bounded model checking for real-world
programs. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering (ASE ’13).
IEEE, 136–146. https://doi.org/10.1109/ASE.2013.6693074

Juliusz Chroboczek. 2023. parse update subtlv in Jech. https://github.com/jech/babeld/blob/babeld-1.12-branch/message.c.
Juliusz Chroboczek and David Schinazi. 2023. RFC 8966: The Babel Routing Protocol. https://www.rfc-editor.org/rfc/

rfc8966.html.
Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic program alignment for equivalence

checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’19). ACM, 1027–1040. https://doi.org/10.1145/3314221.3314596

FRR community. 2023. The FRRouting protocol suite. https://github.com/FRRouting/frr.
Wikipedia contributors. 2022. List of open-source routing platforms. https://wikipedia.org/wiki/List of open-source

routing platforms.
Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS ’08, Vol. 4963). Springer, 337–340. https://doi.org/10.1007/978-3-540-
78800-3 24

FRR Developers. 2023. FRRouting. https://github.com/FRRouting/frr/blob/ab68283ceedc05ea1a7f9c54f03a87f5dc199a01/
babeld/message.c.

Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva. 2021. Prognosis: closed-box analysis of network
protocol implementations. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). ACM, 762–774.
https://doi.org/10.1145/3452296.3472938

Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016. Combining model learning and model checking to analyze
TCP implementations. In Computer Aided Verification (CAV ’16, Vol. 9780). Springer, 454–471. https://doi.org/10.1007/978-
3-319-41540-6 25

Raffaella Gentilini, Carla Piazza, and Alberto Policriti. 2003. From bisimulation to simulation: Coarsest partition problems.
Journal of Automated Reasoning 31, 1 (2003), 73–103. https://doi.org/10.1023/A:1027328830731

Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: whitebox fuzzing for security testing. Commun. ACM
55, 3 (2012), 40–44. https://doi.org/10.1145/2093548.2093564

Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input Grammars from Dynamic Control Flow. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’20). ACM, 172–183. https://doi.org/10.1145/3368089.3409679

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1145/2837614.2837656
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3519939.3523716
https://doi.org/10.1145/3519939.3523716
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1145/1653662.1653737
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://doi.org/10.1145/2591062.2591104
https://doi.org/10.1109/ASE.2013.6693074
https://github.com/jech/babeld/blob/babeld-1.12-branch/message.c
https://www.rfc-editor.org/rfc/rfc8966.html
https://www.rfc-editor.org/rfc/rfc8966.html
https://doi.org/10.1145/3314221.3314596
https://github.com/FRRouting/frr
https://wikipedia.org/wiki/List_of_open-source_routing_platforms
https://wikipedia.org/wiki/List_of_open-source_routing_platforms
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/FRRouting/frr/blob/ab68283ceedc05ea1a7f9c54f03a87f5dc199a01/babeld/message.c
https://github.com/FRRouting/frr/blob/ab68283ceedc05ea1a7f9c54f03a87f5dc199a01/babeld/message.c
https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/3368089.3409679

137:26 Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013. Dowser: a guided fuzzer to find
buffer overflow vulnerabilities. In 22nd USENIX Security Symposium (USENIX Security ’13). USENIX, 49–64. https:
//www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller

Heartbleed. 2020. The Heartbleed Bug. https://heartbleed.com.
Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. 2020. Pangolin: Incremental hybrid fuzzing

with polyhedral path abstraction. In 2020 IEEE Symposium on Security and Privacy (S&P ’20). IEEE, 1613–1627. https:
//doi.org/10.1109/SP40000.2020.00063

Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCamant, Pongsin Poosankam, Daniel Reynaud, and
Dawn Song. 2011. Differential Slicing: Identifying Causal Execution Differences for Security Applications. In 2011 IEEE
Symposium on Security and Privacy (S&P ’11). IEEE, 347–362. https://doi.org/10.1109/SP.2011.41

Bakhadyr Khoussainov and Anil Nerode. 2012. Automata theory and its applications. Vol. 21. Springer. https://doi.org/
10.1007/978-1-4612-0171-7

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. 2012. Symdiff: A language-agnostic semantic
diff tool for imperative programs. In Computer Aided Verification (CAV ’12, Vol. 7358). Springer, 712–717. https://doi.org/
10.1007/978-3-642-31424-7 54

Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel. 2013. Differential Assertion Checking.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE ’13). ACM, 345–355.
https://doi.org/10.1145/2491411.2491452

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In
Proceedings of the International Symposium on Code Generation and Optimization (CGO ’04). IEEE, 75. https://doi.org/
10.1109/CGO.2004.1281665

Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Reverse Engineering Input Syntactic Structure from Program
Execution and Its Applications. IEEE Transactions on Software Engineering 36, 05 (2010), 688–703. https://doi.org/10.1145/
1453101.1453114

Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z.
Guyer, Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto. Commun.
ACM 58, 2, 44–46. https://doi.org/10.1145/2644805

Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2018. MODE: automated neural network
model debugging via state differential analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18).
ACM, 175–186. https://doi.org/10.1145/3236024.3236082

Viktor Malı́k and Tomáš Vojnar. 2021. Automatically checking semantic equivalence between versions of large-scale
C projects. In 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST ’21). IEEE, 329–339.
https://doi.org/10.1109/ICST49551.2021.00045

Mares Martin, Machek Pavel, Filip Ondrej, and CZ.NIC. 2023. BIRD internet routing daemon. https://gitlab.nic.cz/labs/bird.
Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik. 2018. Client-specific equivalence checking. In Proceedings of

the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE ’18). ACM, 441–451. https:
//doi.org/10.1145/3238147.3238178

Madanlal Musuvathi and Dawson R. Engler. 2004. Model Checking Large Network Protocol Implementations. In Proceedings
of the 1st USENIX Symposium on Networked Systems Design and Implementation (NSDI ’04). USENIX, 12. https://doi.org/
10.1145/3092282.3092289

Yannic Noller, Corina S Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske. 2020. HyDiff:
Hybrid differential software analysis. In Proceedings of the 42nd International Conference on Software Engineering (ICSE
’20). ACM, 1273–1285. https://doi.org/10.1145/3377811.3380363

Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. 2016. Shadow of a doubt: testing for divergences between
software versions. In Proceedings of the 38th International Conference on Software Engineering (ICSE ’16). ACM, 1181–1192.
https://doi.org/10.1145/2884781.2884845

Joshua Pereyda. 2023. BooFuzz. https://github.com/jtpereyda/boofuzz.
Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pundefinedsundefinedreanu. 2008. Differential Symbolic

Execution. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(SIGSOFT ’08/FSE ’16). ACM, 226–237. https://doi.org/10.1145/1453101.1453131

Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed Incremental Symbolic Execution. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’11). ACM,
504–515. https://doi.org/10.1145/1993498.1993558

Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and Suman Jana. 2017. Nezha: Efficient domain-
independent differential testing. In 2017 IEEE Symposium on security and privacy (S&P ’17). IEEE, 615–632. https:
//doi.org/10.1109/SP.2017.27

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller
https://heartbleed.com
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP.2011.41
https://doi.org/10.1007/978-1-4612-0171-7
https://doi.org/10.1007/978-1-4612-0171-7
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1453101.1453114
https://doi.org/10.1145/1453101.1453114
https://doi.org/10.1145/2644805
https://doi.org/10.1145/3236024.3236082
https://doi.org/10.1109/ICST49551.2021.00045
https://gitlab.nic.cz/labs/bird
https://doi.org/10.1145/3238147.3238178
https://doi.org/10.1145/3238147.3238178
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1145/3377811.3380363
https://doi.org/10.1145/2884781.2884845
https://github.com/jtpereyda/boofuzz
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1109/SP.2017.27
https://doi.org/10.1109/SP.2017.27

ParDiff: Practical Static Differential Analysis of Network Protocol Parsers 137:27

David A. Ramos and Dawson R. Engler. 2011. Practical, low-effort equivalence verification of real code. In Computer Aided
Verification (CAV ’11, Vol. 6806). Springer, 669–685. https://doi.org/10.1007/978-3-642-22110-1 55

David A. Ramos and Dawson R. Engler. 2015. Under-Constrained Symbolic Execution: Correctness Checking for Real
Code. In 24th USENIX Security Symposium (USENIX Security ’15). USENIX, 49–64. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/ramos

Gaganjeet Singh Reen and Christian Rossow. 2020. DPIFuzz: a differential fuzzing framework to detect DPI elusion strategies
for QUIC. In Proceedings of the 36th Annual Computer Security Applications Conference (ACSAC ’20). ACM, 332–344.
https://doi.org/10.1145/3427228.3427662

Richard Rutledge and Alessandro Orso. 2022. Automating Differential Testing with Overapproximate Symbolic Execution.
In 2022 15th IEEE Conference on Software Testing, Verification and Validation (ICST ’22). IEEE, 256–266. https://doi.org/
10.1109/ICST53961.2022.00035

Davide Sangiorgi. 1998. On the bisimulation proof method. Mathematical Structures in Computer Science 8 (1998), 447 – 479.
https://api.semanticscholar.org/CorpusID:14986397

Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang. 2023. Lifting Network Protocol Implementation
to Precise Format Specification with Security Applications. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’23). ACM, 1287–1301. https://doi.org/10.1145/3576915.3616614

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and precise sparse
value flow analysis for million lines of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’18). ACM, 693–706. https://doi.org/10.1145/3192366.3192418

Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. 2011. SPAS: Scalable path-sensitive pointer analysis on full-sparse
SSA. In Proceedings of the 9th Asian Symposium on Programming Languages and Systems (APLAS ’11). Springer, 155–171.
https://doi.org/10.1007/978-3-642-25318-8 14

Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. 2012. Equivalence checking of static affine programs
using widening to handle recurrences. ACM Transactions on Programming Languages and Systems 34, 3 (2012), 1–35.
https://doi.org/10.1145/2362389.2362390

Guannan Wei, Songlin Jia, Ruiqi Gao, Haotian Deng, Shangyin Tan, Oliver Bracevac, and Tiark Rompf. 2023. Compiling
Parallel Symbolic Execution with Continuations. In Proceedings of the 38th International Conference on Software Engineering
(ICSE ’23). IEEE, 1316–1328. https://doi.org/10.1109/ICSE48619.2023.00116

Yichen Xie and Alex Aiken. 2005. Scalable error detection using Boolean satisfiability. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’05). ACM, 351–363. https://doi.org/
10.1145/1047659.1040334

Youngseok Yang, Taesoo Kim, and Byung-Gon Chun. 2021. Finding consensus bugs in ethereum via multi-transaction
differential fuzzing. In Proceedings of the 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’21). USENIX, 349–365. https://www.usenix.org/conference/osdi21/presentation/yang

Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-Min Hu. 2021. TCP-Fuzz: Detecting Memory
and Semantic Bugs in TCP Stacks with Fuzzing. In USENIX Annual Technical Conference (ATC ’21). USENIX, 489–502.
https://www.usenix.org/conference/atc21/presentation/zou

Received 21-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 137. Publication date: April 2024.

https://doi.org/10.1007/978-3-642-22110-1_55
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos
https://doi.org/10.1145/3427228.3427662
https://doi.org/10.1109/ICST53961.2022.00035
https://doi.org/10.1109/ICST53961.2022.00035
https://api.semanticscholar.org/CorpusID:14986397
https://doi.org/10.1145/3576915.3616614
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1007/978-3-642-25318-8_14
https://doi.org/10.1145/2362389.2362390
https://doi.org/10.1109/ICSE48619.2023.00116
https://doi.org/10.1145/1047659.1040334
https://doi.org/10.1145/1047659.1040334
https://www.usenix.org/conference/osdi21/presentation/yang
https://www.usenix.org/conference/atc21/presentation/zou

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Buffer Accesses Offending Protocol-Specified Bound
	2.2 Why Existing Works Fail

	3 Our Approach in a Nutshell
	3.1 Overview
	3.2 How ParDiff Works

	4 Design
	4.1 Collecting Format Constraints
	4.2 From Format Constraints to FSM
	4.3 Locating Implementation Differences
	4.4 Soundness

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Effectiveness of Each Stage in ParDiff
	5.3 RQ2: Efficiency of Each Stage in ParDiff
	5.4 RQ3-1: Comparing ParDiff to Coarse-grained use of SMT Solver
	5.5 RQ3-2: Comparing ParDiff to DPIFuzz
	5.6 RQ4: Root Cause of Discovered Bugs

	6 Related Work
	7 Conclusion
	References

